
This Dissertation

entitled

IMPROVING NEURAL MACHINE TRANSLATION FOR LOW-RESOURCE

LANGUAGES

typeset with nddiss2ε v3.2017.2 (2017/05/09) on July 30, 2021 for

Toan Q. Nguyen

This LATEX 2ε classfile conforms to the University of Notre Dame style guidelines as of Fall
2012. However it is still possible to generate a non-conformant document if the instructions
in the class file documentation are not followed!

Be sure to refer to the published Graduate School guidelines at
http://graduateschool.nd.edu as well. Those guidelines
override everything mentioned about formatting in the documenta-
tion for this nddiss2ε class file.

This page can be disabled by specifying the “noinfo” option to the class invocation.
(i.e.,\documentclass[...,noinfo]{nddiss2e})

This page is NOT part of the dissertation/thesis. It should be disabled
before making final, formal submission, but should be included in the

version submitted for format check.

nddiss2ε documentation can be found at these locations:

http://graduateschool.nd.edu
https://ctan.org/pkg/nddiss

http://graduateschool.nd.edu
http://graduateschool.nd.edu
https://ctan.org/pkg/nddiss

IMPROVING NEURAL MACHINE TRANSLATION FOR LOW-RESOURCE

LANGUAGES

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Toan Q. Nguyen

David Chiang, Director

Graduate Program in Computer Science and Engineering

Notre Dame, Indiana

July 2021

This document is in the public domain.

IMPROVING NEURAL MACHINE TRANSLATION FOR LOW-RESOURCE

LANGUAGES

Abstract

by

Toan Q. Nguyen

Neural Machine Translation (NMT), which exploits the power of continuous represen-

tation and neural networks, has become the de facto standard choice in both academic re-

search and industry. While the early non-attentional, recurrent neural network-based NMT

already showed impressive performance, with the invention of the attention mechanism,

it has been pushed further and achieved state-of-the-art performance. However, like other

neural networks, these NMT systems are often data-hungry and require millions of training

examples to achieve competitive results.

Unfortunately, only a few language pairs have this privilege. Most fall into the low-

resource domain and often have only around 100k training sentence pairs or less. Some

examples could be the LORELEI1 or IWSLT datasets. This lack of data is particularly

critical for the early recurrent neural network-based NMT systems, which are often outper-

formed by the traditional Phrase-based Machine Translation (PBMT) ones in low-resource

scenarios. It also means more advanced techniques are required to effectively train a good

NMT system for low-resource languages.

In this dissertation, I will show that with better use of training data, better normal-

ization or improved model architecture, we can in fact build a competitive NMT system

with only limited data at hand. On data, I propose two simple methods to improve NMT

1https://www.darpa.mil/program/low-resource-languages-for-emergent-incidents

https://www.darpa.mil/program/low-resource-languages-for-emergent-incidents

Toan Q. Nguyen

performance by better exploiting training resources. The first approach makes use of the

relationship between languages for better transfer learning from one language pair to the

other. The second one is a simple data augmentation via concatenation which can yield

on average +1 BLEU on several language pairs. On normalization, I show how simple `2-

based normalization at word embedding and hidden state levels can significantly improve

translation for low-resource languages, with a particular focus on rare words. Finally, on

model architecture, I investigate three simple yet effective changes. First, I propose a sim-

ple lexical module which can alleviate the mistranslation issue for rare words. Second,

I study the Transformer model and show how a simple rearrangement of its components

can improve both training and performance for low-resource languages. Lastly, I explore

the untied positional attention in Transformer and demonstrate how it can improve both

performance and interpretability.

CONTENTS

Figures . v

Tables . vii

Acknowledgments . viii

Chapter 1: Introduction . 1

Chapter 2: Background . 5
2.1 RNN-based NMT . 5
2.2 Transformer . 7

Chapter 3: Transfer Learning across Low-Resource, Related Languages for Neural
Machine Translation . 11
3.1 Introduction . 11
3.2 Method . 12

3.2.1 Transliteration . 13
3.2.2 Segmentation . 13

3.3 Experiments . 14
3.4 Results and Analysis . 16

Chapter 4: Data Augmentation by Concatenation for Low-Resource Translation: A
Mystery and a Solution . 19
4.1 Introduction . 19
4.2 Concatenation . 20

4.2.1 Methods . 21
4.2.2 Initial experiments . 21

4.3 Analysis . 23
4.3.1 Discourse context . 23
4.3.2 Position shifting . 24
4.3.3 Context diversity . 26
4.3.4 Length diversity . 27
4.3.5 Feature ablation . 28

4.4 Conclusion . 28

ii

Chapter 5: Improving Lexical Choice in Neural Machine Translation 30
5.1 Introduction . 30
5.2 Neural Machine Translation . 32
5.3 Normalization . 32
5.4 Lexical Translation . 34
5.5 Experiments . 36

5.5.1 Data . 36
5.5.2 Systems . 37
5.5.3 Details . 38

5.6 Results and Analysis . 40
5.6.1 Overall . 40
5.6.2 Impact on translation . 41
5.6.3 Alignment and unknown words 41
5.6.4 Impact of r . 42
5.6.5 Lexicon . 42
5.6.6 Byte Pair Encoding . 43

5.7 Related Work . 43
5.8 Conclusion . 44

Chapter 6: Transformers without Tears: Improving the Normalization of Self-Attention 50
6.1 Introduction . 51
6.2 Background . 52

6.2.1 Identity mappings for transformers 52
6.2.2 Weight initialization . 53
6.2.3 Scaled `2 normalization and FIXNORM 54
6.2.4 Learning rates . 55

6.3 Experiments and Results . 57
6.3.1 Training details . 57
6.3.2 Large vs. small initialization . 58
6.3.3 Scaled `2 normalization and FIXNORM 59
6.3.4 Learning rates . 61
6.3.5 High-resource setting . 63

6.4 Analysis . 64
6.4.1 Performance curves . 64
6.4.2 Activation scaling and the role of g 65

Chapter 7: Untied Positional Attention For Neural Machine Translation 68
7.1 Introduction . 68
7.2 Experiments . 70
7.3 Results and Analysis . 70
7.4 Conclusion . 72

Chapter 8: Conclusion . 75

iii

Bibliography . 78

iv

FIGURES

1.1 Performance of PBMT and NMT with different amount of data (Koehn and
Knowles [38]) . 3

2.1 An RNN-based NMT with attention model. The encoder is represented in
blue, the decoder is in red and the attention mechanism is in brown. Best
viewed in color. 6

2.2 The Transformer model architecture [87] 8

3.1 Tokenized dev BLEU scores for various settings as a function of the num-
ber of word/subword types. Key: baseline = train child model only; transfer
= train parent, then child model; +freeze = freeze target word embeddings
in child model. 18

4.1 gl2en: dev BLEU scores by length bucket (top) and its train length per-
centile (bottom). 29

5.1 The word embedding norm ‖We‖ generally correlates with the frequency
of e, except for the most frequent words. The bias be has the opposite
behavior. The plots show the median and range of bins of size 256. 35

5.2 While the tied and fixnorm systems shift attention to the left one word (on
the source side), our fixnorm+lex model and that of Arthur et al. [4] put it
back to the correct position, improving unknown-word replacement for the
words Deutsche Telekom. Columns are source (English) words and rows
are target (Vietnamese) words. Bolded words are unknown. 46

6.1 Development BLEU on en→vi with POSTNORM or PRENORM, and with
LAYERNORM or SCALENORM. 65

6.2 The global norm of gradients when using POSTNORM or PRENORM, and
with LAYERNORM, SCALENORM and FIXNORM. Best viewed in color. . 66

6.3 Learned g values for PRENORM + SCALENORM + FIXNORM models, ver-
sus depth. Left: Attention sublayers (decoder-encoder denotes decoder
sublayers attending on the encoder). Right: Feedforward sublayers and
the final linear layer. 66

6.4 Learned g values for our PRENORM + SCALENORM + FIXNORM en→vi
model (with and without label smoothing), versus depth. Left and Right
are the same as in Figure 6.3. 67

v

7.1 Two learned patterns from self-attention in decoder (top) and encoder (bot-
tom) in untied-pos (left) and random-untied-pos (right). 73

7.2 Positional attentions in untied-pos (left) and random-untied-pos (right)
seem to track source sentence lengths (red dots). 74

vi

TABLES

3.1 Number of tokens (×106) and sentences (×103) in training data 14

3.2 Test BLEU scores . 17

3.3 Amount of child’s source types that appear in parent 17

4.1 Data and model statistics . 22

4.2 Concatenation Results . 23

4.3 Dev BLEU scores for CONSEC and RAND 24

4.4 Position shifting ablation study . 25

4.5 Feature ablation study . 26

5.1 Preliminary dev BLEU scores . 33

5.2 Example dot product terms from baseline 34

5.3 Data and model statistics . 37

5.4 Test BLEU scores . 40

5.5 Example translations . 45

5.6 Example dot product terms from fixnorm+lex 47

5.7 Impact of r . 47

5.8 Extracted lexicon examples . 48

5.9 test bleu scores for BPE-based systems 49

6.1 Data and model properties . 55

6.2 Dev BLEU scores on en→vi using Xavier normal initialization 59

6.3 Test BLEU scores . 60

6.4 Dev BLEU scores with different learning rate schedulers 61

6.5 Dev BLEU scores using NOWARMUP 62

6.6 WMT '14 English-to-German BLEU scores 63

6.7 Test BLEU of various `2-based normalization techniques 64

7.1 Dev BLEU scores for untied positional attention 71

7.2 Test BLEU scores for untied positional attention 72

vii

ACKNOWLEDGMENTS

This work was supported in part by University of Southern California subcontract

67108176 under DARPA contract HR0011-15-C-0115. I was also supported by a fellow-

ship from the Vietnam Education Foundation. I would like to express great appreciation

to Dr. Sharon Hu for letting me use her group’s GPU cluster (supported by NSF award

1629914), and to NVIDIA corporation for the donation of a Titan X GPU. A part of this

thesis was also based upon work supported in part by the Office of the Director of Na-

tional Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA),

via contract #FA8650-17-C-9116. The views and conclusions contained herein are those

of the authors and should not be interpreted as necessarily representing the official poli-

cies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S.

Government is authorized to reproduce and distribute reprints for governmental purposes

notwithstanding any copyright annotation therein.

A PhD is a long journey, and I would not make it without the support from so many

people. I try my best to find all the names but if I miss any, please do know I always

appreciate your kind help.

To David, thank you for being my advisor. Thank you for always being there when I

have a question (even on weekends). Thanks for teaching me so many things from writing,

editing, coding, brainstorming to pushing ideas further. And most important of all, thanks

for always being so patient with me.

I would like to thank my committee members: Kyunghyun Cho, Tim Weninger, and

Walter Scheirer for many insightful questions, discussions, and for reading this.

I would also want to thank my labmates: Kenton, Tomer, Arturo, Antonis, Brian, Justin,

viii

Xing, Stephen, Darcey, and Huadong. Thank you for always reading my papers and giving

detailed comments. Thanks for all the questions and discussions in group meetings. And

thanks for driving me around :). To Tomer, I’m always grateful for our talks and your ad-

vices. To Stephen and Kenton, thanks for reading my thesis and providing such meticulous

comments. Moving to a big country is tough, thank you Kenton for making it so much

easier. Your parties and road trips certainly made South Bend’s crazy winter much more

bearable. Next time we meet, beer is on me, and I’ll put a keg at your place first.

I would not be able to start my graduate study without the help from the Vietnam Edu-

cation Foundation (VEF), University of Notre Dame, the Center for Research Computing,

the ISSA office and most personally, Joyce Yeats. Thank you for always helping out, for

bearing with my questions, for giving me such a great opportunity and great friends along

the way.

To my South Bend friends, Kevin, Linh Đới, Lân Đinh, Duy Nguyễn, Hà Linh, anh

Hậu, anh Luân, chị Loan, chị Lan, Quân, Ngọc, and many others, thanks for always giving

me a Tết vibe, be it Tết or not. My PhD life would be totally intolerable without you all.

To my colleagues at Amazon and Google, anh Thuỵ, Julian, Katrin, Yuzhong, Liang-

wei, Shobhana, Julia, Colin, George, Pallavi, and Sweta, thank you for such great summers

with tons of fun and the best work experience.

To my Boston friends, anh Ân, Hiền, Ốc, Ngọc, Huy, Thanh, Quân Mai, Mai Linh,

Dzung, Zaw, Cún, Trang, Thông, and Nora, thanks for such great memories this whole

crazy year. You all are such a wonderful group of friends. I’m so happy for my sister and

brother-in-law to have found you. I’m moving soon but when I have a chance, I will find

my way back here to join you again. Please take good care of my family.

To my dearest friends, Thảo Châu, anh Hoàng, anh Huy, Thái Nguyên, Hoà, Cường,

Quyên, my goddaughter Mít, Rio Lâm, anh Sơn, bé Linh, Hạnh Em, Huy, Huyên, Nghĩa,

Đức Lê, Đức Hồ, Hoàng Dương, thanks for countless emotional support through the years.

To Rio, thank you for always being there to listen to me. To my best friend Cường, his wife

ix

Quyên, and their baby daughter Mít, thank you for always giving me your unconditional

support. To bé Linh, thanks for always being so kind.

To someone else, thanks for the thumbs up :).

To my family, anh Văn, Lý Mập, anh Sơn, Zee, Hiếu, Vy, chị Trâm, bé Mơ, Tin, Mon,

Mi, bác Hai Sơn, bác Vân, and many others, thank you for always being there for me. To

Lý Mập and anh Văn, thank you for taking care of the family. I would not be here today

without your selfless support. To Zee and Hiếu, thanks for enduring me this past 5+ years.

I learn so much from you two and I’m always looking forward to our future trips across

America and the world. To you all, I am deeply grateful for taking care of Mom while I’m

away, thank you!

Lời cuối con muốn dành cho Ba Việt và Mẹ Lan. Con cảm ơn Ba Mẹ đã luôn đặt việc

học hành của con lên đầu. Con mang ơn Ba Mẹ vì đã hy sinh quá nhiều cho con. Con yêu

Ba Mẹ. Con nhớ Ba rất nhiều!

x

A portrait of me, circa 2016–2021. Painted by my talented cousin bé Mơ.

xi

CHAPTER 1

INTRODUCTION

Neural Machine Translation (NMT) is part of the sequence-to-sequence learning frame-

work using neural networks. First introduced by Sutskever et al. [83], the model consists

of an encoder which encodes the source sentence into a fixed-length vector, from which

the decoder generates the target sentence. While achieving impressive results, this model

still performs well below traditional phrase-based systems (PBMT). As pointed out by Cho

et al. [11], the main reason lies in the limited capacity of the fixed-length vector repre-

sentation to encode long sentences. To address this problem, Bahdanau et al. [6] invent

the attention mechanism which allows the decoder to, at every time step, dynamically se-

lect a subset of encoder outputs to focus on instead of relying on a fixed-length repre-

sentation. This encoder-decoder-attention model significantly improves NMT translation

on long sentences and is the first NMT system to achieve comparable performance with

phrase-based ones.

Even though Bahdanau et al. [6] successfully train a NMT model that outperforms

the PBMT system, they only experiment on a large dataset (348M tokens were used for

training). Most languages in the world do not fall in this high-resource category. For

example, the LORELEI1 datasets often have only a few thousands to around 100k sentence

pairs per language pair. Like other neural networks, NMT is known for being data-hungry

which makes it difficult to train a good NMT system for such low-resource languages. In

fact, Zoph et al. [100] show that out-of-the-box NMT systems perform significantly poorer

1https://www.darpa.mil/program/low-resource-languages-for-emergent-incidents

1

for NMT in this domain. Most notably, Koehn and Knowles [38] quantitatively showed that

NMT needed up to around 100M tokens of training data to match PBMT’s performance

(Figure 1.1). Digging deeper, Arthur et al. [4] point out that NMT often makes more

mistakes for rare words than PBMT, which I will demonstrate in chapter 5 is a critical

problem for low-resource languages.

This dissertation consists of four reviewed publications [57, 58, 59, 60] and one unfin-

ished work. They are all under a common theme that we can improve NMT performance

for low-resource languages via better data exploitation, better modeling, or better nor-

malization. Specifically:

Better data exploitation: In chapter 3, I show that we can improve NMT performance

on a language pair using another related language pair by exploiting their similarities at

subword level. In chapter 4, I study a simple but effective method for data augmentation

via concatenation for low-resource NMT and explain why it works.

Better modeling: I show that we can improve NMT by using a better neural network

architecture. In particular, for RNN-based NMT, I propose a lexical module which can

significantly alleviates the rare word mistranslation problem (chapter 5). For Transformer,

I suggest a better placement of layer normalization and residual connections which helps

to improve stability of training (chapter 6). Finally, in chapter 7, I study a simple change

to Transformer’s attention by untying positional attention from word attention. I show how

this could significantly improve performance for low-resource language pairs and helps

with model interpretability.

Better normalization: I show that using simple `2 normalization, we can improve both

the rare word mistranslation and training (chapter 5 and 6).

2

106 107 108
0

10

20

30

21.8
23.4

24.9
26.2 26.9

27.9 28.6 29.2 29.6
30.1 30.4

16.4
18.1

19.6
21.2

22.2
23.5

24.7
26.1 26.9

27.8 28.6

1.6

7.2

11.9
14.7

18.2

22.4

25.7
27.4 29.2

30.3 31.1

Corpus Size (English Words)

BLEU Scores with Varying Amounts of Training Data

Phrase-Based with Big LM
Phrase-Based

Neural

Figure 3: BLEU scores for English-Spanish sys-
tems trained on 0.4 million to 385.7 million
words of parallel data. Quality for NMT starts
much lower, outperforms SMT at about 15 mil-
lion words, and even beats a SMT system with a
big 2 billion word in-domain language model un-
der high-resource conditions.

How do the data needs of SMT and NMT com-
pare? NMT promises both to generalize better (ex-
ploiting word similary in embeddings) and condi-
tion on larger context (entire input and all prior
output words).

We built English-Spanish systems on WMT
data,7 about 385.7 million English words paired
with Spanish. To obtain a learning curve, we used

1
1024 , 1

512 , ..., 1
2 , and all of the data. For SMT, the

language model was trained on the Spanish part of
each subset, respectively. In addition to a NMT
and SMT system trained on each subset, we also
used all additionally provided monolingual data
for a big language model in contrastive SMT sys-
tems.

Results are shown in Figure 3. NMT ex-
hibits a much steeper learning curve, starting with
abysmal results (BLEU score of 1.6 vs. 16.4 for

1
1024 of the data), outperforming SMT 25.7 vs.
24.7 with 1

16 of the data (24.1 million words), and
even beating the SMT system with a big language
model with the full data set (31.1 for NMT, 28.4
for SMT, 30.4 for SMT+BigLM).

7Spanish was last represented in 2013, we used data from
http://statmt.org/wmt13/translation-task.html

Src: A Republican strategy to counter the re-election
of Obama

1
1024

Un órgano de coordinación para el anuncio de
libre determinación

1
512

Lista de una estrategia para luchar contra la
elección de hojas de Ohio

1
256

Explosión realiza una estrategia divisiva de
luchar contra las elecciones de autor

1
128

Una estrategia republicana para la eliminación
de la reelección de Obama

1
64

Estrategia siria para contrarrestar la reelección
del Obama .

1
32

+ Una estrategia republicana para contrarrestar la
reelección de Obama

Figure 4: Translations of the first sentence of
the test set using NMT system trained on varying
amounts of training data. Under low resource con-
ditions, NMT produces fluent output unrelated to
the input.

The contrast between the NMT and SMT learn-
ing curves is quite striking. While NMT is able to
exploit increasing amounts of training data more
effectively, it is unable to get off the ground with
training corpus sizes of a few million words or
less.

To illustrate this, see Figure 4. With 1
1024 of the

training data, the output is completely unrelated to
the input, some key words are properly translated
with 1

512 and 1
256 of the data (estrategia for strat-

egy, elección or elecciones for election), and start-
ing with 1

64 the translations become respectable.

3.3 Rare Words

Conventional wisdom states that neural machine
translation models perform particularly poorly on
rare words, (Luong et al., 2015; Sennrich et al.,
2016b; Arthur et al., 2016) due in part to the
smaller vocabularies used by NMT systems. We
examine this claim by comparing performance on
rare word translation between NMT and SMT
systems of similar quality for German–English
and find that NMT systems actually outperform
SMT systems on translation of very infrequent
words. However, both NMT and SMT systems
do continue to have difficulty translating some
infrequent words, particularly those belonging to
highly-inflected categories.

For the neural machine translation model, we
use a publicly available model8 with the training
settings of Edinburgh’s WMT submission (Sen-
nrich et al., 2016a). This was trained using Ne-

8https://github.com/rsennrich/wmt16-scripts/

31

Figure 1.1: Performance of PBMT and NMT with different amount of data (Koehn and
Knowles [38])

3

Thesis statement: While NMT inherently requires large amount of data for training, with

better data exploitation, better modeling, and better normalization we can successfully

train strong NMT systems for low-resource languages.

4

CHAPTER 2

BACKGROUND

Because NMT is a sequence-to-sequence learning problem, the apparent choice for the

encoder or decoder architecture is recurrent neural networks (RNNs). Oftentimes, RNN

variants such as LSTM [27] or GRU [12] are used. On the other hand, Transformer [87]

takes a radical departure from this. This model relies entirely on the attention mechanism

for the encoder to compute source sentence representation and for the decoder to remember

which part of the target sentence has been decoded so far. Aside from its state-of-the-art

performance, Transformer is also appealing for its train-time parallelism which better ex-

ploits the power of graphics processing units (GPUs). Transformer was not the first to

replace RNNs; in fact, an earlier work by Gehring et al. [17] uses convolutional neural net-

works (CNN) instead of LSTM and achieves state-of-the-art performance on many NMT

tasks. However, since Transformer has been shown to perform better and has become the

de facto choice for NMT, I will discuss only it in this document and refer readers to Gehring

et al. [17] for more details of the CNN-based approach.

In this chapter, I will provide a rough overview of the RNN-based and attention-based

(Transformer) NMT models. [83, 12, 6, 11, 49] are good resources for a more complete

picture of the former. For the latter, aside from the original work [87], Rush [71] provides

a complete dissection on the model and is a good reference for implementation.

2.1 RNN-based NMT

A RNN-based NMT often consists of a source embedding Ws ∈ R
d×Vx , a target input

embedding Wy ∈ R
d×Vy , a target output embedding Wo ∈ R

Vy×d, an encoder f and a de-

5

14

Tôi là Toán . <bos> name is

ct

ht

hs

h̃t

tên My

is

Figure 2.1: An RNN-based NMT with attention model. The encoder is represented in blue,
the decoder is in red and the attention mechanism is in brown. Best viewed in color.

coder g. Vx, Vy, d are source vocabulary size, target vocabulary size and embedding size,

respectively. Both f and g are some variants of RNN; typically, an LSTM or a GRU is

used.

Each source sentence is represented as a sequence of one-hot vectors (x1, · · · , xLx), xi ∈

RVx , with Lx being the source sentence length. The input to the encoder is:

x = (Wsx1, · · · ,WsxLs) (2.1)

The encoder reads in this sequence step-by-step and generates, at time step s, an output

vector hs = f (xs, hs−1). The decoder works similarly and generates, at time step t, an output

vector ht = g(yt, ht−1). This ht is used by the attention mechanism to calculate a weight αs

for each hs. The context vector ct is then simply a weighted sum over all encoder outputs:

ct =

Lx∑
s=1

αshs (2.2)

6

While I refer readers to [6] or [49] for other ways to calculate αs, a simple approach

called dot product by Luong et al. [49] is:

es = hT
t hs (2.3)

αs =
exp(es)∑Lx

s′=1 exp(es′)
(2.4)

The decoder output ht and context vector ct are combined, either by a nonlinear feed-

forward neural network or simply summed together, to produce the final output vector h̃t.

Finally, the predicted probability of the t-th target word is:

p(yt | y<t, x) = softmax(Woh̃t) (2.5)

The model is trained to maximize the conditional probability:

p(y | x) =

Ly∏
t=1

p(yt | y<t, x) (2.6)

with Ly be the target sentence length.

Figure 2.1 gives a visual representation of these architectural mechanisms.

2.2 Transformer

The main difference between Transformer model and an RNN-based NMT model is

Transformer replaces the RNN with the self-attention mechanism as shown in Figure 2.2.

While I refer readers to Vaswani et al. [87] for a more complete formulation, in this section

I will briefly describe four main components of Transformer.

Multi-head Attention In Transformer, each attention layer could have multiple heads

whose outputs are combined at the end. Given an input source sequence x = (x1, · · · , xLs), xi ∈

Rd, we can pack this sequence into a matrix X = concat(x), X ∈ RLs×d. The i-th attention

7

Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the

3

Figure 2.2: The Transformer model architecture [87]

8

head maps the input X into a query (Q), a key (K), and a value (V):

Q = XWQ
i (2.7)

K = XWK
i (2.8)

V = XWV
i (2.9)

where WQ
i ,W

K
i ,W

V
i ∈ R

d×dk are learnable variables. The output of the i-th attention head

is then defined as:

Hi = softmax
(

QKT

√
dk

)
V (2.10)

These matrices Hi are then combined and mapped to the final output:

H = concat(H1, · · · ,Hn)WO (2.11)

where WO ∈ Rd×d is also a learnable parameter.

Oftentimes, we set d = ndk so that there is no increase in both number of parameters

or computations compared to using a single attention model. It works similarly on the

decoder, but we also need to make sure it does not see the future. This can be done by

simply setting the corresponding values within the softmax in equation 2.10 to −∞. Since

these two attention mechanisms allow encoder or decoder to attend to themselves, they are

also called self-attention. At each decoder layer, the decoder also employs a similar atten-

tion mechanism to attend to encoder’s output, we call this cross-attention. One important

9

change is:

Q = YWQ
i (2.12)

K = XWK
i (2.13)

V = XWV
i (2.14)

where X is the encoder’s output, Y is the current decoder’s output.

Feed-forward Networks The second important component of Transformer is the feed-

forward networks. This is essentially two linear layers with RELU [19]:

FFN(X) = max(0, XW1 + b1)W2 + b2 (2.15)

where W1 ∈ R
d×d f f , Ww ∈ R

d f f×d, b1, b2 ∈ R
d
f f , d f f > d.

Layer Normalization and Residual Connection Residual connections [24] are em-

ployed at every sublayer of Transformer. This means the input to each multi-head attention

or feed-forward layer is summed element-wise to their output. The output from each resid-

ual addition is then fed through a layer normalization layer [5]. The placement of the layer

normalization is actually very important to Transformer’s stability which we will discuss

in section 6.

Positional Encoding To let Transformer be aware of the order of the sequence, we use

a cosine positional embedding which is defined as:

PE(pos,2i) = sin(
pos

100002i/d) (2.16)

PE(pos,2i+1) = cos(
pos

100002i/d) (2.17)

This positional embedding is simply summed element-wise with the word embedding

before being fed into the encoder and decoder.

10

CHAPTER 3

TRANSFER LEARNING ACROSS LOW-RESOURCE, RELATED LANGUAGES FOR

NEURAL MACHINE TRANSLATION

In this chapter, I will introduce the first data exploitation method. More specifically,

I show how we can make use of the relatedness between languages to improve transfer

learning from one language pair to another. The content of this part was published at

IJCNLP 2017 [58].

Abstract We present a simple method to improve neural translation of a low-resource

language pair using parallel data from a related, also low-resource, language pair. The

method is based on the transfer method of Zoph et al., but whereas their method ignores any

source vocabulary overlap, ours exploits it. First, we split words using Byte Pair Encoding

(BPE) to increase vocabulary overlap. Then, we train a model on the first language pair

and transfer its parameters, including its source word embeddings, to another model and

continue training on the second language pair. Our experiments show that transfer learn-

ing helps word-based translation only slightly, but when used on top of a much stronger

BPE baseline, it yields larger improvements of up to 4.3 BLEU.

3.1 Introduction

A common strategy to improve learning of low-resource languages is to use resources

from related languages [54]. However, adapting these resources is not trivial. NMT offers

some simple ways of doing this. For example, Zoph et al. [100] train a parent model

on a (possibly unrelated) high-resource language pair, then use this model to initialize a

11

child model which is further trained on a low-resource language pair. In particular, they

showed that a French-English model could be used to improve translation on a wide range

of low-resource language pairs such as Hausa-, Turkish-, and Uzbek-English.

In this chapter, we explore the opposite scenario, where the parent language pair is also

low-resource, but related to the child language pair. We show that, at least in the case of

three Turkic languages (Turkish, Uzbek, and Uyghur), the original method of Zoph et al.

[100] does not always work, but it is still possible to use the parent model to considerably

improve the child model.

The basic idea is to exploit the relationship between the parent and child language

lexicons. Zoph et al.’s original method makes no assumption about the relatedness of the

parent and child languages, so it effectively makes a random assignment of the parent-

language word embeddings to child-language words. But if we assume that the parent and

child lexicons are related, it should be beneficial to transfer source word embeddings from

parent-language words to their child-language equivalents.

Thus, the problem amounts to finding a representation of the data that ensures a suf-

ficient overlap between the vocabularies of the languages. To do this, we map the source

languages to a common alphabet and use Byte Pair Encoding (BPE) [78] on the union of

the vocabularies to increase the number of common subwords.

In our experiments, we show that transfer learning helps word-based translation, but

not always significantly. But when used on top of a much stronger BPE baseline, it yields

larger and statistically significant improvements. Using Uzbek as a parent language and

Turkish and Uyghur as child languages, we obtain improvements over BPE of 0.8 and 4.3

BLEU, respectively.

3.2 Method

The basic idea of our method is to extend the transfer method of Zoph et al. [100] to

share the parent and child’s source vocabularies, so that when source word embeddings are

12

transferred, a word that appears in both vocabularies keeps its embedding. In order for this

to work, it must be the case that the parent and child languages have considerable vocabu-

lary overlap, and that when a word occurs in both languages, it often has a similar meaning

in both languages. Thus, we need to process the data to make these two assumptions hold

as much as possible.

3.2.1 Transliteration

If the parent and child language have different orthographies, it should help to map

them into a common orthography. Even if the two use the same script, some transfor-

mation could be applied; for example, we might change French -eur endings to Spanish

-or. Here, we take a minimalist approach. Turkish and Uzbek are both written using Latin

script, and we did not apply any transformations to them. Our Uyghur data is written in

Arabic script, so we transliterated it to Latin script using an off-the-shelf transliterator.1

The transliteration is a string homomorphism, replacing Arabic letters with English letters

or consonant clusters independent of context.

3.2.2 Segmentation

To increase the overlap between the parent and child vocabularies, we use BPE to break

words into subwords. For the BPE merge rules to not only find the common subwords

between two source languages but also ensure consistency between source and target seg-

mentation among each language pair, we learn the rules from the union of source and target

data of both the parent and child models. The rules are then used to segment the corpora.

It is important to note that this results in a single vocabulary, used for both the source and

target languages in both models.

1https://cis.temple.edu/~anwar/code/latin2uyghur.html

13

https://cis.temple.edu/~anwar/code/latin2uyghur.html

TABLE 3.1

NUMBER OF TOKENS (×106) AND SENTENCES (×103) IN TRAINING

DATA

word-based BPE 5k BPE 60k

model toks sents toks sents toks sents

Uzb par 1.5 102 2.4 92 1.9 103

Tur chd 0.9 56 1.5 50 1.2 57

Uzb par 1.5 102 2.4 90 2.0 103

Uyg chd 1.7 82 2.1 77 2.0 88

3.3 Experiments

We used Turkish-, Uzbek-, and Uyghur-English parallel texts from the LORELEI pro-

gram. We tokenized all data using the Moses toolkit [39]; for Turkish-English experiments,

we also truecased the data. For Uyghur-English, the word-based models were trained in the

original Uyghur data written in Arabic script; for BPE-based systems, we transliterated it

to Latin script as described above.

For the word-based systems, we fixed the vocabulary size and replaced out-of-vocabulary

words with _UNK. We tried different sizes for each language pair; however, each word-based

system’s target vocabulary size is limited by that of the child, so we could only use up to

45,000 word types for Turkish-English and 20,000 for Uyghur-English.

The BPE-based systems could make use of bigger vocabulary size thanks to the com-

bination of both parent and child source and target vocabularies. We varied the number of

BPE merge operations from 5,000 to 60,000. Instead of using a fixed vocabulary cutoff,

14

we used the full vocabulary; to ensure the model still learns how to deal with unknown

words, we trained on two copies of the training data: one unchanged, and one in which

all rare words (whose frequency is less than 5) were replaced with _UNK. Accordingly, the

number of epochs was halved.

Following common practice, we fixed an upper limit on training sentence length (dis-

carding longer sentences). Because the BPE-based systems have shorter tokens and there-

fore longer sentences, we set this upper limit differently for the word-based and BPE-based

systems to approximately equalize the total size of the training data. This led to a limit of

50 tokens for word-based models and 60 tokens for BPE-based models. See Table 3.1 for

statistics of the resulting datasets.

We trained using Adadelta [96], with a minibatch size of 32 and dropout with a dropout

rate of 0.2. We rescaled the gradient when its norm exceeded 5. For the Uzbek-English

to Turkish-English experiment, the parent and child models were trained for 100 and 50

epochs, respectively. For the Uzbek-English to Uyghur-English experiment, the parent and

child models were trained for 50 and 200, respectively. As mentioned above, the BPE

models were trained for half as many epochs because their data is duplicated.

We used beam search for translation on the dev and test sets. Since NMT tends to favor

short translations [11], we use the length normalization approach of Wu et al. [94] which

uses a different score s(e | f) instead of log-probability:

s(e | f) =
log p(e | f)

lp(e)

lp(e) =
(5 + |e|)α

(5 + 1)α
.

We set α = 0.8 for all of our experiments.

We stopped training when the tokenized BLEU score was maximized on the develop-

ment set. We also optimized the vocabulary size and the number of BPE operations for the

word-based and BPE-based systems, respectively, to maximize the tokenized BLEU on the

15

development set.

After translation at test time, we rejoined BPE segments, recased, and detokenized.

Finally, we evaluated using case-sensitive BLEU.

As a baseline, we trained a child model using BPE but without transfer (that is, with

weights randomly initialized). We also compared against a word-based baseline (without

transfer) and two word-based systems using transfer without vocabulary-sharing, corre-

sponding with the method of Zoph et al. [100]: one where the target word embeddings are

fine-tuned, and one where they are frozen.

3.4 Results and Analysis

Our results are shown in Table 3.2. In this low-resource setting, we find that transferring

word-based models does not consistently help. On Turkish-English, both transfer methods

give only a statistically insignificant improvement (p > 0.05); on Uyghur-English, transfer

without freezing target embeddings helps somewhat, but transfer with freezing helps only

insignificantly.

In both language pairs, the models that use BPE perform much better than their word-

based counterparts. When we apply transfer learning to this much stronger baseline, we

find that the relative improvements actually increase; that is, the combined effect of BPE

and transfer learning is more than additive. On Turkish-English, the improvement is +0.8

BLEU over the BPE baseline; on Uyghur-English, a healthy +4.3 over the BPE baseline.

A similar pattern emerges when we examine the best BLEU scores on the development

set (Figure 3.1). Whereas word-based transfer methods help very little for Turkish-English,

and help or hurt slightly for Uyghur-English, our BPE-based transfer approach consistently

improves over both the baseline and transfer word-based models. We surmise that the

improvement is primarily due to the vocabulary overlap created by BPE (see Table 3.3).

16

TABLE 3.2

TEST BLEU SCORES

baseline transfer transfer+freeze

BLEU size BLEU size BLEU size

Tur-Eng
word-based 8.1 30k 8.5∗ 30k 8.6∗ 30k

BPE 12.4 10k 13.2† 20k — —

Uyg-Eng
word-based 8.5 15k 10.6† 15k 8.8∗ 15k

BPE 11.1 10k 15.4‡ 8k — —

Whereas transfer learning at word-level does not always help, our method consistently yields a sig-
nificant improvement over the stronger BPE systems. Scores are case-sensitive test BLEU. Key: size =
vocabulary size (word-based) or number of BPE operations (BPE). The symbols † and ‡ indicate statisti-
cally significant improvements with p < 0.05 and p < 0.01, respectively, while ∗ indicates a statistically
insignificant improvement (p > 0.05).

TABLE 3.3

AMOUNT OF CHILD’S SOURCE TYPES THAT APPEAR IN PARENT

task settings train dev

Tur-Eng
word-based 30k 3.9% 3.6%

BPE 20k 58.8% 25.0%

Uyg-Eng
word-based 15k 0.5% 1.7%

BPE 8k 57.2% 48.5%

17

0 20 40
0

5

10

15

20

Tu
r-

E
ng

B
L

E
U

Word-based

baseline
transfer

transfer+freeze

0 20 40 60
0

5

10

15

20
BPE-based

baseline
transfer

0 5 10 15 20
15

20

25

30

Vocabulary size (×1000)

U
yg

-E
ng

B
L

E
U

baseline
transfer

transfer+freeze

0 20 40 60
15

20

25

30

Number of BPE operations (×1000)

baseline
transfer

Figure 3.1. Tokenized dev BLEU scores for various settings as a function of the
number of word/subword types. Key: baseline = train child model only; transfer

= train parent, then child model; +freeze = freeze target word embeddings in
child model.

18

CHAPTER 4

DATA AUGMENTATION BY CONCATENATION FOR LOW-RESOURCE

TRANSLATION: A MYSTERY AND A SOLUTION

In the previous chapter, we have looked into how to exploit the relatedness between

languages to improve transfer learning from one language pair to the other. In this one,

I will introduce another method to make use of training data. In particular, I will show

how pseudo-data from concatenation of training sentences can improve performance for

low-resource settings. This chapter appeared as a publication at IWSLT 2021 [60].

Abstract In this chapter, we investigate the driving factors behind concatenation, a sim-

ple but effective data augmentation method for low-resource neural machine translation.

Our experiments suggest that discourse context is unlikely the cause for concatenation

improving BLEU by about +1 across four language pairs. Instead, we demonstrate that

the improvement comes from three other factors unrelated to discourse: context diversity,

length diversity, and (to a lesser extent) position shifting.

4.1 Introduction

Many attempts have been made to augment neural machine translation (MT) systems

to use discourse context [33, 80, 75, 98, 82, 42, 35, 85, 99, 31]. One particularly simple

method is to concatenate consecutive pairs of sentence-pairs during training, but not during

translation [86, 56, 40].1 In this chapter, we confirm that this simple method helps, by

1As this work was being finalized, Kondo et al. [40] published independent work also presenting random
concatenation as data augmentation for NMT. They find that concatenation helps the model translate long
sentences better, while the focus of the present paper is to explain thoroughly why it helps.

19

roughly +1 BLEU across four low-resource language pairs. But we demonstrate that the

reason it helps is not discourse context, because concatenating random pairs of sentence-

pairs yields the same improvement.

Instead, we view concatenation as a kind of data augmentation or noising method (one

which pleasantly requires no alteration to the text, unlike data augmentation methods that

disturb word order [7, 2] or replace words with automatically-selected words [16, 15, 93]).

Concatenating random sentences is easier than concatenating consecutive sentences, be-

cause many parallel corpora discard document boundaries, drop sentence-pairs, or even

reorder sentence-pairs, so it can be difficult to know which sentence-pairs are truly con-

secutive.

But the fact that random concatenation helps so much creates a mystery, which is the

focus of the paper. If the reason is not discourse context, what is the reason? We consider

three new hypotheses:

• Random concatenation creates greater diversity of positions, because it lets the model
see sentences shifted by effectively random distances.

• Random concatenation creates greater diversity of contexts, helping the model learn
what not to attend to.

• Random concatenation creates greater diversity of sentence lengths within a mini-
batch.

Through a careful ablation study, we demonstrate that all three of these factors more or less

contribute to the improvement, and together completely explain the improvement.

4.2 Concatenation

We first present the concatenation methods and confirm that they improve low-resource

translation.

20

4.2.1 Methods

Let Dorig = {(xi, yi) | i = 1, . . . ,N} be the original training data. We consider two

concatenation strategies:

CONSEC Concatenate consecutive sentence-pairs: Dnew = {(xixi+1, yiyi+1) | i = 1, . . . ,N −
1}.

RAND Same as CONSEC, but randomly permute Dorig before concatenation.

For example, consider the following en→vi sentence pairs:

And I think back . → Và tôi nghĩ lại .

I think back to my father . → Tôi nghĩ lại về cha tôi .

With <BOS>/<EOS> markings, the concatenated sentence-pairs would be:

source input: And I think back . <EOS> I think back to my father . <EOS>

target input: <BOS> Và tôi nghĩ lại . <BOS> Tôi nghĩ lại về cha tôi .

target output: Và tôi nghĩ lại . <EOS> Tôi nghĩ lại về cha tôi . <EOS>

Since consecutive training examples often come from the same document, CONSEC lets

the model look at some of the discourse context during training. In RAND, however, the

concatenated sentences are almost always unrelated. In both cases, we train models on the

combined data, Dorig ∪ Dnew.

4.2.2 Initial experiments

We experiment on four low-resource language pairs: {Galician, Slovak} to English and

English to {Hebrew, Vietnamese} [70, 47] using Transformer [87]. We use the same setup

as Nguyen and Salazar [59], with PreNorm, FixNorm and ScaleNorm, as it has been shown

to perform well on low-resource tasks. Since the data comes pre-tokenized, we only apply

BPE. Data statistics and hyper-parameters are summarized in Table 6.1.

21

TABLE 4.1

DATA AND MODEL STATISTICS

train/dev/test sents. (x1000) train steps/epoch epochs layers heads dropout BPE

gl→en 10/0.68/1 100 1000 4 4 0.4 3k

sk→en 61/2.27/2.45 600 200 6 8 0.3 8k

en→vi 133/1.55/1.27 1500 200 6 8 0.3 8k

en→he 210/4.52/5.51 2000 200 6 8 0.3 8k

For baseline, the training data is Dorig. For concatenation, we first create Dnew, then

combine it with Dorig to create the training data. Following Morishita et al. [52], we ran-

domly shuffle the training data and read it in chunks of 10k examples. Each chunk is sorted

by source length before being packed into minibatches of roughly 4096 source/target tokens

each.

We calculate tokenized BLEU using multi-bleu.perl [39] and measure statistical

significance using bootstrap resampling [37].

As seen in Table 4.2, concatenation consistently outperforms the baseline across all

datasets with significant improvement (p < 0.01) on almost every case. We observe that

there is generally more improvement with less training data. For example, en→he with

more than 200k training examples gets only +0.5 BLEU, but gl→en with only 10k sen-

tences achieves +1.3 BLEU. On average, this method yields +1 BLEU over all four lan-

guage pairs. We can also see that concatenating consecutive or random sentence pairs

results in similar performance. For this reason, all the following ablation studies are con-

ducted with RAND unless noted otherwise

22

TABLE 4.2

CONCATENATION RESULTS

gl→en sk→en en→vi en→he average

dev test dev test dev test dev test dev ∆ test ∆

baseline 22.9 20.7 29.2 30.3 29.0 32.7 30.3 28.1 27.8 28.0

CONSEC 24.9 22.9† 30.3 31.5† 29.2 33.5† 30.6 28.6† 28.8 +1.0 29.1 +1.1

RAND 25.3 23.1† 30.3 31.6† 29.2 33.0 30.8 28.5† 28.9 +1.1 29.0 +1.0

Consecutive (CONSEC) and random (RAND) concatenation give the same BLEU improvement across
our four low-resource language pairs. † = statistically significant improvement on the test set compared to
baseline (p < 0.01).

4.3 Analysis

Why does a method as simple as concatenation help so much? We reject the initial

hypothesis that the model is assisted by discourse context (§4.3.1) and consider three new

hypotheses related to data augmentation (§4.3.2–§4.3.4).

4.3.1 Discourse context

Since consecutive sentences often come from the same document, CONSEC provides the

model with more discourse context during training. For RAND, however, the two sentences

in a generated example are unlikely to have any relation at all. Despite this difference, we

can see from Table 4.2 that both CONSEC and RAND achieve similar performance.

To better understand whether discourse context plays any role here, we conduct a simple

experiment. We perform concatenation just as in CONSEC and RAND, but on the dev set (as

well as the training set), and measure BLEU on the concatenated dev set. The new BLEU

scores are shown in Table 4.3, showing that even having discourse context available at

translation time does not enable CONSEC to do better than RAND. While we acknowledge

23

TABLE 4.3

DEV BLEU SCORES FOR CONSEC AND RAND

dev BLEU

gl→en sk→en en→vi en→he avg

CONSEC 23.5 29.6 29.7 31.1 28.5

RAND 24.0 29.2 29.4 31.3 28.5

Even when we concatenate consecutive sentence-pairs during translation, CONSEC does not outperform
RAND. All BLEU scores in this table are computed on concatenated versions of the dev sets, and so are not
comparable with the scores in other tables.

that there could be improvement due to discourse context that is not captured by BLEU, we

can also say that the gain in BLEU that we do observe with concatenation is independent

of the availability of discourse context.

4.3.2 Position shifting

Since the Transformer uses absolute positional encodings, if a word is observed only

a few times, the model may have difficulty generalizing to occurrences in other positions.

Moreover, if there are too few long sentences, the model may have difficulty translating

words very far from the start of the sentence. In concatenation, the second sentence is

shifted by a random distance n with n being the first sentence’s length in the sense that its

positions are indexed from n instead of 0. We hypothesize that this allows the model to see,

and thus, to be better-trained on more positions.

If the improvement indeed comes from position shifting, we should be able to reproduce

it without concatenation. In concatenation, we train on Dorig ∪ Dnew. While Dnew has

the same number of sentences as Dorig (§4.2.1), each sentence is a concatenation of two

24

TABLE 4.4

POSITION SHIFTING ABLATION STUDY

Row gl→en sk→en en→vi en→he avg ∆

1 baseline 22.9 29.2 29.0 30.3 27.8

2 baseline + sim-shift 22.7 29.8† 29.0 30.4 28.0 +0.2

3 baseline + uniform-shift 23.8 29.8† 29.3 30.5 28.4 +0.6

4 RAND 25.3† 30.3† 29.2 30.8† 28.9 +1.1

5 RAND + uniform-shift 25.5† 30.7† 29.14 30.7† 29.0 +1.2

Position shifting improves accuracy somewhat, but the version of position shifting that mimics that of
concatenation (sim-shift) gives less of an improvement than shifting by distances uniformly sampled from
[0, 100] (uniform-shift). All BLEU scores are on dev sets. † = statistically significant improvement compared
to baseline (p < 0.01).

sentences in Dorig. This means that in total, 1/3 of sentences are shifted. So, we simulate

the position-shifting that occurs in concatenation as follows. For each sentence-pair (fi, ei)

in the training data, with probability 1/3, choose a random training sentence pair (f j, e j)

and shift fi by | f j| and ei by |e j|. We call this system sim-shift.

We also try a more uniform shifting method, called uniform-shift, in which we sample,

with probability 0.1, distances s and t uniformly from [0, 100] and shift fi by s and shift ei

by t.

Lines 1–3 in Table 4.4 show that both uniform-shift and sim-shift do help somewhat.

Surprisingly, sim-shift is outperformed by uniform-shift, especially for gl→en with a gap of

0.9 BLEU. We attribute this to the fact that uniform-shift tends to shift sentences for longer

distances and hence better generalizes to longer sentences. Indeed, as shown in Figure 4.1

(bottom), most training sentences in gl→en are shorter than 60. In Figure 4.1 (top), we

see that uniform-shift outperforms sim-shift by the largest margin on the longest sentences.

Nevertheless, adding uniform-shift on top of RAND (Table 4.4, row 5) only improves it very

25

TABLE 4.5

FEATURE ABLATION STUDY

Row gl→en sk→en en→vi en→he avg ∆

1 RAND 25.3† 30.3† 29.2 30.8† 28.9

2 RAND + mask 24.3† 30.0† 28.9 30.6 28.5 −0.4

3 RAND + sep-batch 24.9† 30.1† 29.1 30.6 28.7 −0.2

4 RAND + mask + sep-batch 23.2 29.8† 29.3 30.5 28.2 −0.7

5 RAND + mask + sep-batch + reset-pos 23.1 29.6† 28.9 30.5 28.0 −0.9

6 baseline 22.9 29.2 29.0 30.3 27.8 −1.1

Masking attention to prevent concatenated sentences from attending to one another (mask) reduces
accuracy. Forming minibatches so as to prevent concatenation from increasing length diversity (sep-batch)
also reduces accuracy. When we do both and also remove the effect of position shifting (reset-pos), we
eliminate essentially all the improvement due to concatenation. All BLEU scores are on dev sets. † =
statistically significant improvement compared to baseline (p < 0.01)

slightly.

To conclude, we show that position shifting can have a positive impact on low-resource

NMT. However, it seems to contribute only a small part of the improvement due to con-

catenation, as we will confirm below (§4.3.5).

4.3.3 Context diversity

In an attention layer, each query word is free to attend to any key word, and the model

must learn to distinguish the keys that are related to a query from those that are not. Let us

call the former positive contexts and the latter negative contexts. While positive contexts

are important for determining how to translate a word, it is not trivial to generate more

positive contexts, as it requires creating more parallel sentences that actually use the word.

By contrast, creating more negative contexts is easy; this is what concatenation does. So

26

one hypothesis is that concatenation helps by creating more negative contexts to improve

the model’s ability to attend to positive contexts.

To test this, we modify RAND by masking all self-attentions so that, in each concatenated

example, each sentence can only attend to itself and not the other sentence. Similarly, in

cross-attention, each target sentence can only attend to its corresponding source sentence,

not the other one. Table 4.5, row 2 shows that this masking removes a large part of the im-

provement due to concatenation, showing that the availability of negative contexts during

training does help during translation.

4.3.4 Length diversity

The last possible effect of concatenation that we consider is also the most subtle. Fol-

lowing previous work [52, 64], we first sort sentences by length, then splitting into mini-

batches of a fixed number of tokens. This puts sentences of similar lengths into the same

minibatch, which improves computation efficiency as there is less padding. However, as

observed by Morishita et al. [52], short and long sentences are qualitatively different, so

creating a minibatch of only short sentences or only long sentences approximates the full

gradient less well than a minibatch of random sentences would.

With random concatenation, we again put examples of similar lengths into the same

minibatch, but each example may consist of two sentences of very different lengths. Thus,

it improves diversity within a minibatch while retaining efficiency. We hypothesize that

this greater length diversity is part of the reason concatenation helps.

To evaluate this hypothesis, we try a different batch generation strategy from the one

described above in Section 4.2.2. In this setup, called sep-batch, we make two changes.

First, the creation of Dnew comes after sorting by sentence length (but before division into

minibatches), so that in Dnew, each example comes from two similar-length ones. Second,

we create batches from Dorig and Dnew separately so there is no mixture of short sentences

in Dorig and long sentences in Dnew.

27

As we can see in Table 4.5, removing length diversity (sep-batch, row 3) causes a

small negative impact of −0.2 BLEU. So length diversity may be a contributing factor to

concatenation’s improvement.

4.3.5 Feature ablation

We have shown that all three hypotheses (position diversity, context diversity, and

length diversity) seem to contribute to the BLEU improvement due to concatenation. To

see whether these hypotheses exhaustively explain it, we test all three together. First, we

apply mask and sep-batch together, resulting in a drop of −0.7 BLEU (Table 4.5, row 4).

Finally, to remove the effect of position shifting, we additionally reset the positions

of the second sentence in every concatenated example so they start at 0 again (reset-pos).

Applying this on top of mask and sep-batch, it brings about the largest drop of −0.9 BLEU

compared to RAND, resulting in a final model that is very close to the baseline. Indeed, this

model is only significantly different from the baseline on sk→en (p < 0.01). We conclude

that these three hypotheses completely account for the improvement due to concatenation.

4.4 Conclusion

Random concatenation is a simple and surprisingly effective data augmentation method

for low-resource NMT. Although the improvement of +1 BLEU it yields seems mysterious

at first, we have shown that it can be explained by the fact that concatenation increases

positions, context, and length diversity. Of these three factors, context diversity seems to

be the most important.

28

<10 [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) >=60

Length bucket

19

20

21

22

23

24

25

26

27
B

L
E

U

sim-shift uniform-shift

BLEU score by length bucket for gl2en

0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1

Percentile of target sentence length for gl2en

Figure 4.1. gl2en: dev BLEU scores by length bucket (top) and its train length
percentile (bottom).

29

CHAPTER 5

IMPROVING LEXICAL CHOICE IN NEURAL MACHINE TRANSLATION

Previously, we have shown two simple ways to better exploit data to improve NMT

performance. In this chapter, we shall look into better modeling and better normalization.

More specifically, we show how simple `2 normalization can improve rare-word mistrans-

lation in particular and training in general. To further alleviate the rare-word translation

issue, we use a simple lexical module which lets model focus more on the source side in-

formation when translating. This chapter was published as a long paper at NAACL 2018

[57].

Abstract We explore two solutions to the problem of mistranslating rare words in neural

machine translation. First, we argue that the standard output layer, which computes the

inner product of a vector representing the context with all possible output word embed-

dings, rewards frequent words disproportionately, and we propose to fix the norms of both

vectors to a constant value. Second, we integrate a simple lexical module which is jointly

trained with the rest of the model. We evaluate our approaches on eight language pairs

with data sizes ranging from 100k to 8M words, and achieve improvements of up to +4.3

BLEU, surpassing phrase-based translation in nearly all settings.

5.1 Introduction

Despite their competitive performance, there are still many open problems in NMT

[38]. One particular issue is mistranslation of rare words. For example, consider the Uzbek

sentence:

30

Source: Ammo muammolar hali ko’p, deydi amerikalik olim Entoni Fauchi.

Reference: But still there are many problems, says American scientist Anthony Fauci.

Baseline NMT: But there is still a lot of problems, says James Chan.

At the position where the output should be Fauci, the NMT model’s top three candidates

are Chan, Fauci, and Jenner. All three surnames occur in the training data with reference

to immunologists: Fauci is the director of the National Institute of Allergy and Infectious

Diseases, Margaret (not James) Chan is the former director of the World Health Organi-

zation, and Edward Jenner invented smallpox vaccine. But Chan is more frequent in the

training data than Fauci, and James is more frequent than either Anthony or Margaret.

Because NMT learns word representations in continuous space, it tends to translate

words that “seem natural in the context, but do not reflect the content of the source sen-

tence” [4]. This coincides with other observations that NMT’s translations are often fluent

but lack accuracy [92, 94].

Why does this happen? At each time step, the model’s distribution over output words e

is

p(e) ∝ exp
(
We · h̃ + be

)
where We and be are a vector and a scalar depending only on e, and h̃ is a vector depending

only on the source sentence and previous output words. We propose two modifications to

this layer. First, we argue that the term We · h̃, which measures how well e fits into the

context h̃, favors common words disproportionately, and show that it helps to fix the norm

of both vectors to a constant. Second, we add a new term representing a more direct con-

nection from the source sentence, which allows the model to better memorize translations

of rare words.

Below, we describe our models in more detail. Then we evaluate our approaches on

eight language pairs, with training data sizes ranging from 100k words to 8M words, and

show improvements of up to +4.3 BLEU, surpassing phrase-based translation in nearly all

31

settings. Finally, we provide some analysis to better understand why our modifications

work well1.

5.2 Neural Machine Translation

Given a source sequence f = f1 f2 · · · fm, the goal of NMT is to find the target sequence

e = e1e2 · · · en that maximizes the objective function:

log p(e | f) =

n∑
t=1

log p(et | e<t, f).

The predicted probability distribution of the t’th target word is:

p(et | e<t, f) = softmax(Woh̃t + bo). (5.1)

The rows of the output layer’s weight matrix Wo can be thought of as embeddings of

the output vocabulary, and sometimes are in fact tied to the embeddings in the input layer,

reducing model size while often achieving similar performance [28, 69]. We verified this

claim on some language pairs and found out that this approach usually performs better than

without tying, as seen in Table 5.1. For this reason, we always tie the target embeddings

and Wo in all of our models.

5.3 Normalization

The output word distribution (5.1) can be written as:

p(e) ∝ exp
(
‖We‖ ‖h̃‖ cos θWe,h̃ + be

)
,

1Our code for this work can be found at https://github.com/tnq177/improving_lexical_
choice_in_nmt

32

https://github.com/tnq177/improving_lexical_choice_in_nmt
https://github.com/tnq177/improving_lexical_choice_in_nmt

TABLE 5.1

PRELIMINARY DEV BLEU SCORES

ha-en tu-en hu-en

untied embeddings 17.2 11.5 26.5

tied embeddings 17.4 13.8 26.5

don’t normalize h̃t 18.6 14.2 27.1

normalize h̃t 20.5 16.1 28.8

Preliminary experiments show that tying target embeddings with output layer weights performs as well
as or better than the baseline, and that normalizing h̃ is better than not normalizing h̃. All numbers are BLEU
scores on development sets, scored against tokenized references.

where We is the embedding of e, be is the e’th component of the bias bo, and θWe,h̃ is the

angle between We and h̃. We can intuitively interpret the terms as follows. The term ‖h̃‖

has the effect of sharpening or flattening the distribution, reflecting whether the model is

more or less certain in a particular context. The cosine similarity cos θWe,h̃ measures how

well e fits into the context. The bias be controls how much the word e is generated; it is

analogous to the language model in a log-linear translation model [62].

Finally, ‖We‖ also controls how much e is generated. Figure 5.1 shows that it generally

correlates with frequency. But because it is multiplied by cos θWe,h̃, it has a stronger effect

on words whose embeddings have direction similar to h̃, and less effect or even a negative

effect on words in other directions. We hypothesize that the result is that the model learns

‖We‖ that are disproportionately large.

For example, returning to the example from Section 5.1, these terms are shown in Table

5.2. Observe that cos θWe,h̃ and even be both favor the correct output word Fauci, whereas

‖We‖ favors the more frequent, but incorrect, word Chan. The most frequently-mentioned

33

TABLE 5.2

EXAMPLE DOT PRODUCT TERMS FROM BASELINE

e ‖We‖ ‖h̃‖ cos θWe,h̃ be logit

Chan 5.25 19.5 0.144 −1.53 13.2

Fauci 4.69 19.5 0.154 −1.35 12.8

Jenner 5.23 19.5 0.120 −1.59 10.7

immunologist trumps other immunologists.

To solve this issue, we suggest to fix the norm of all target word embeddings to some

value r. Following the weight normalization approach of Salimans and Kingma [73], we

reparameterize We as r ve
‖ve‖

, but keep r fixed.

A similar argument could be made for ‖h̃t‖: because a large ‖h̃t‖ sharpens the distribu-

tion, causing frequent words to more strongly dominate rare words, we might want to limit

it as well. We compared both approaches on a development set and found that replacing h̃t

in equation (5.1) with r h̃t
‖h̃t‖

indeed performs better, as shown in Table 5.1.

5.4 Lexical Translation

The attentional hidden state h̃ contains information not only about the source word(s)

corresponding to the current target word, but also the contexts of those source words and

the preceding context of the target word. This could make the model prone to generate a

target word that fits the context but doesn’t necessarily correspond to the source word(s).

Count-based statistical models, by contrast, don’t have this problem, because they simply

don’t model any of this context. Arthur et al. [4] try to alleviate this issue by integrating a

count-based lexicon into an NMT system. However, this lexicon must be trained separately

34

2

4

6

8

‖W
e‖

ha-en
tu-en
hu-en

0 5,000 10,000 15,000

−2

−1

0

frequency rank of e

b e

ha-en
tu-en
hu-en

Figure 5.1. The word embedding norm ‖We‖ generally correlates with the
frequency of e, except for the most frequent words. The bias be has the opposite

behavior. The plots show the median and range of bins of size 256.

using GIZA++ [61], and its parameters form a large, sparse array, which can be difficult to

store in GPU memory.

Instead, we use a simple feedforward neural network (FFNN) that is trained jointly with

the rest of the NMT model to generate a target word based directly on the source word(s).

Let fs (s = 1, . . . ,m) be the embeddings of the source words. We use the attention weights

to form a weighted average of the embeddings (not the hidden states, as in the main model)

to give an average source-word embedding at each decoding time step t:

f `t = tanh
∑

s

at(s) fs.

35

Then we use a one-hidden-layer FFNN with skip connections [24]:

h`t = tanh(W f `t) + f `t

and combine its output with the decoder output to get the predictive distribution over output

words at time step t:

p(yt | y<t, x) = softmax(Woh̃t + bo + W`h`t + b`).

For the same reasons that were given in Section 5.3 for normalizing h̃t and the rows of

Wo
t , we normalize h`t and the rows of W` as well. Note, however, that we do not tie the rows

of W` with the word embeddings; in preliminary experiments, we found this to yield worse

results.

5.5 Experiments

We conducted experiments testing our normalization approach and our lexical model

on eight language pairs using training data sets of various sizes. This section describes the

systems tested and our results.

5.5.1 Data

We evaluated our approaches on various language pairs and datasets:

• Tamil (ta), Urdu (ur), Hausa (ha), Turkish (tu), and Hungarian (hu) to English (en),
using data from the LORELEI program.

• English to Vietnamese (vi), using data from the IWSLT 2015 shared task.2

• To compare our approach with that of Arthur et al. [4], we also ran on their English
to Japanese (ja) KFTT and BTEC datasets.3

2https://nlp.stanford.edu/projects/nmt/

3http://isw3.naist.jp/~philip-a/emnlp2016/

36

https://nlp.stanford.edu/projects/nmt/
http://isw3.naist.jp/~philip-a/emnlp2016/

TABLE 5.3

DATA AND MODEL STATISTICS

tokens vocab layers

×106 ×103 num/size

ta-en 0.2/0.1 4.0/3.4 1/512

ur-en 0.2/0.2 4.2/4.2 1/512

ha-en 0.8/0.8 10.6/10.4 2/512

tu-en 0.8/1.1 21.1/13.3 2/512

uz-en 1.5/1.9 29.8/17.4 2/512

hu-en 2.0/2.3 27.3/15.7 2/512

en-vi 2.1/2.6 17.0/7.7 2/512

en-ja (BTEC) 3.6/5.0 17.8/21.8 4/768

en-ja (KFTT) 7.8/8.0 48.2/49.1 4/768

Statistics of data and models: effective number of training source/target tokens, source/target vocabulary
sizes, number of hidden layers and number of units per layer.

We tokenized the LORELEI datasets using the default Moses tokenizer, except for

Urdu-English, where the Urdu side happened to be tokenized using Morfessor FlatCat

(w = 0.5). We used the preprocessed English-Vietnamese and English-Japanese datasets

as distributed by Luong et al., and Arthur et al., respectively. Statistics about our data sets

are shown in Table 5.3.

5.5.2 Systems

We compared our approaches against two baseline NMT systems:

untied, which does not tie the rows of Wo to the target word embeddings, and

37

tied, which does.

In addition, we compared against two other baseline systems:

Moses: The Moses phrase-based translation system [39], trained on the same data as the

NMT systems, with the same maximum sentence length of 50. No additional data was used

for training the language model. Unlike the NMT systems, Moses used the full vocabulary

from the training data; unknown words were copied to the target sentence.

Arthur: Our reimplementation of the discrete lexicon approach of Arthur et al. [4]. We

only tried their auto lexicon, using GIZA++ [61], integrated using their bias approach.

Note that we also tied embedding as we found it also helped in this case.

Against these baselines, we compared our new systems:

fixnorm: The normalization approach described in Section 5.3.

fixnorm+lex: The same, with the addition of the lexical translation module from Section

5.4.

5.5.3 Details

Model We use the global attentional model with general scoring function and input feed-

ing by Luong et al. [49]. Following their practice, we fed the source sentences to the en-

coder in reverse order during both training and testing. Information about the number and

size of hidden layers is shown in Table 5.3. The word embedding size is always equal to

the hidden layer size.

Following common practice, we only trained on sentences of 50 tokens or less. We

limited the vocabulary to word types that appear no less than 5 times in the training data

and map the rest to UNK. For the English-Japanese and English-Vietnamese datasets, we

used the vocabulary sizes reported in their respective papers [4, 47].

For fixnorm, we tried r ∈ {3, 5, 7} and selected the best value based on the development

set performance, which was r = 5 except for English-Japanese (BTEC), where r = 7. For

38

fixnorm+lex, because Wsh̃t+W`h`t takes on values in [−2r2, 2r2], we reduced our candidate

r values by roughly a factor of
√

2, to r ∈ {2, 3.5, 5}. A radius r = 3.5 seemed to work the

best for all language pairs.

Training We trained all NMT systems with Adadelta [96]. All parameters were initial-

ized uniformly from [−0.01, 0.01]. When a gradient’s norm exceeded 5, we normalized it

to 5. We also used dropout on non-recurrent connections only [95], with probability 0.2.

We used minibatches of size 32. We trained for 50 epochs, validating on the development

set after every epoch, except on English-Japanese, where we validated twice per epoch. We

kept the best checkpoint according to its BLEU on the development set.

Inference We used beam search with a beam size of 12 for translating both the develop-

ment and test sets. Since NMT often favors short translations [11], we followed Wu et al.

[94] in using a modified score s(e | f) in place of log-probability:

s(e | f) =
log p(e | f)

lp(e)

lp(e) =
(5 + |e|)α

(5 + 1)α

We set α = 0.8 for all of our experiments.

Finally, we applied a postprocessing step to replace each UNK in the target translation

with the source word with the highest attention score [50].

Evaluation For translation into English, we report case-sensitive NIST BLEU against

detokenized references. For English-Japanese and English-Vietnamese, we report tok-

enized, case-sensitive BLEU following Arthur et al. [4] and Luong and Manning [47].

We measure statistical significance using bootstrap resampling [37].

39

TABLE 5.4

TEST BLEU SCORES

untied tied fixnorm fixnorm+lex Moses Arthur

ta-en 10.3 11.1 14 (+2.9) 15.3 (+4.2) 10.5 (−0.6) 14.1 (+3.0)

ur-en 7.9 10.7 12 (+1.3) 13 (+2.3) 14.6 (+3.9) 12.5 (+1.8)

ha-en 16.0 16.6 20 (+3.4) 21.5 (+4.9) 22.2 (+5.6) 18.7 (+2.1)

tu-en 12.2 12.6 16.4 (+3.8) 19.1 (+6.5) 18.1 (+5.5) 16.3 (+3.7)

uz-en 14.9 15.7 18.2 (+2.5) 19.3 (+3.6) 17.2 (+1.5) 17.1 (+1.4)

hu-en 21.6 23.0 24.0 (+1.0) 25.3 (+2.3) 21.3 (−1.7) 22.7 (-0.3)†

en-vi 25.1 25.3 26.8 (+1.5) 27 (+1.7) 26.7 (+1.4) 26.2 (+0.9)

en-ja (BTEC) 51.2 53.7 52.9 (-0.8)† 51.3 (−2.6)† 46.8 (−6.9) 52.4 (−1.3)†

en-ja (KFTT) 24.1 24.5 26.1 (+1.6) 26.2 (+1.7) 21.7 (−2.8) —

Test BLEU of all models. Differences shown in parentheses are relative to tied, with a dagger (†)
indicating an insignificant difference in BLEU (p > 0.01). While the method of Arthur et al. [4] does not
always help, fixnorm and fixnorm+lex consistently achieve significant improvements over tied (p < 0.01)
except for English-Japanese (BTEC). Our models also outperform the method of Arthur et al. on all tasks
and outperform Moses on all tasks but Urdu-English and Hausa-English.

5.6 Results and Analysis

5.6.1 Overall

Our results are shown in Table 5.4. First, we observe, as has often been noted in the

literature, that NMT tends to perform poorer than PBMT on low resource settings (note

that the rows of this table are sorted by training data size).

Our fixnorm system alone shows large improvements (shown in parentheses) relative to

tied. Integrating the lexical module (fixnorm+lex) adds in further gains. Our fixnorm+lex

models surpass Moses on all tasks except Urdu- and Hausa-English, where it is 1.6 and 0.7

40

BLEU short respectively.

The method of Arthur et al. [4] does improve over the baseline NMT on most language

pairs, but not by as much and as consistently as our models, and often not as well as Moses.

Unfortunately, we could not replicate their approach for English-Japanese (KFTT) because

the lexical table was too large to fit into the computational graph.

For English-Japanese (BTEC), we note that, due to the small size of the test set, all

systems except for Moses are in fact not significantly different from tied (p > 0.01). On

all other tasks, however, our systems significantly improve over tied (p < 0.01).

5.6.2 Impact on translation

In Table 5.5, we show examples of typical translation mistakes made by the baseline

NMT systems. In the Uzbek example (top), untied and tied have confused 34 with UNK and

700, while in the Turkish one (middle), they incorrectly output other proper names, Afghan

and Myanmar, for the proper name Kenya. Our systems, on the other hand, translate these

words correctly.

The bottom example is the one introduced in Section 5.1. We can see that our fixnorm

approach does not completely solve the mistranslation issue, since it translates Entoni

Fauchi to UNK UNK (which is arguably better than James Chan). On the other hand,

fixnorm+lex gets this right. To better understand how the lexical module helps in this

case, we look at the top five translations for the word Fauci in fixnorm+lex in Table 5.6.

As we can see, while cos θWe,h̃ might still be confused between similar words, cos θW l
e,hl

significantly favors Fauci.

5.6.3 Alignment and unknown words

Both our baseline NMT and fixnorm models suffer from the problem of shifted align-

ments noted by Koehn and Knowles [38]. As seen in Figure 5.2a and 5.2b, the alignments

for those two systems seem to shift by one word to the left (on the source side). For ex-

41

ample, nói should be aligned to said instead of Telekom, and so on. Although this is not a

problem per se, since the decoder can decide to attend to any position in the encoder states

as long as the state at that position holds the information the decoder needs, this becomes a

real issue when we need to make use of the alignment information, as in unknown word re-

placement [50]. As we can see in Figure 5.2, because of the alignment shift, both tied and

fixnorm incorrectly replace the two unknown words (in bold) with But Deutsche instead

of Deutsche Telekom. In contrast, under fixnorm+lex and the model of Arthur et al. [4],

the alignment is corrected, causing the UNKs to be replaced with the correct source words.

5.6.4 Impact of r

The single most important hyper-parameter in our models is r. Informally speaking,

r controls how much surface area we have on the hypersphere to allocate to word embed-

dings. To better understand its impact, we look at the training perplexity and dev BLEUs

during training with different values of r. Table 5.7 shows the train perplexity and best tok-

enized dev BLEU on Turkish-English for fixnorm and fixnorm+lex with different values

of r.

As we can see, a smaller r results in worse training perplexity, indicating underfitting,

whereas if r is too large, the model achieves better training perplexity but decrased dev

BLEU, indicating overfitting.

5.6.5 Lexicon

One byproduct of lex is the lexicon, which we can extract and examine simply by feed-

ing each source word embedding to the FFNN module and calculating p`(y) = softmax(W`h`+

b`). In Table 5.8, we show the top translations for some entries in the lexicons extracted

from fixnorm+lex for Hungarian, Turkish, and Hausa-English. As expected, the lexical

distribution is sparse, with a few top translations accounting for the most probability mass.

42

5.6.6 Byte Pair Encoding

Byte-Pair-Encoding (BPE) [78] is commonly used in NMT to break words into word-

pieces, improving the translation of rare words. For this reason, we reran our experiments

using BPE on the LORELEI and English-Vietnamese datasets. Additionally, to see if our

methods work in high-resource scenarios, we run on the WMT 2014 English-German (en-

de) dataset,4 using newstest2013 as the development set and reporting tokenized, case-

sensitive BLEU on newstest2014 and newstest2015.

We validate across different numbers of BPE operations; specifically, we try {1k, 2k,

3k} merge operations for ta-en and ur-en due to their small sizes, {10k, 12k, 15k} for

the other LORELEI datasets and en-vi, and 32k for en-de. Using BPE results in much

smaller vocabulary sizes, so we do not apply a vocabulary cut-off. Instead, we train on an

additional copy of the training data in which all types that appear once are replaced with

UNK, and halve the number of epochs accordingly. Our models, training, and evaluation

processes are largely the same, except that for en-de, we use a 4-layer decoder and 4-layer

bidirectional encoder (2 layers for each direction).

Table 5.9 shows that our methods also significantly improve the translation when used

with BPE, for both high and low resource language pairs. With BPE, we are only behind

Moses on Urdu-English.

5.7 Related Work

The closest work to our lex model is that of Arthur et al. [4], which we have discussed

already in Section 5.4. Recent work by Liu et al. [45] has very similar motivation to

that of our fixnorm model. They reformulate the output layer in terms of directions and

magnitudes, as we do here. Whereas we have focused on the magnitudes, they focus on the

directions, modifying the loss function to try to learn a classifier that separates the classes’

4https://nlp.stanford.edu/projects/nmt/

43

https://nlp.stanford.edu/projects/nmt/

directions with something like a margin. Wang et al. [90] also make the same observation

that we do for the fixnorm model, but for the task of face verification.

Handling rare words is an important problem for NMT that has been approached in

various ways. Some have focused on reducing the number of UNKs by enabling NMT to

learn from a larger vocabulary [30, 51]; others have focused on replacing UNKs by copying

source words [21, 20, 50]. However, these methods only help with unknown words, not rare

words. An approach that addresses both unknown and rare words is to use subword-level

information [78, 13, 48]. Our approach is different in that we try to identify and address

the root of the rare word problem. We expect that our models would benefit from more

advanced UNK-replacement or subword-level techniques as well.

Recently, Liu and Kirchhoff [44] have shown that their baseline NMT system with BPE

already outperforms Moses for low-resource translation. However, in their work, they use

the Transformer network [87], which is quite different from our baseline model. It would

be interesting to see if our methods benefit the Transformer network and other models as

well.

5.8 Conclusion

In this section, we have presented two simple yet effective changes to the output layer

of a NMT model. Both of these changes improve translation quality substantially on low-

resource language pairs. In many of the language pairs we tested, the baseline NMT system

performs poorly relative to phrase-based translation, but our system surpasses it (when

both are trained on the same data). We conclude that NMT, equipped with the methods

demonstrated here, is a more viable choice for low-resource translation than before, and

are optimistic that NMT’s repertoire will continue to grow.

44

TABLE 5.5

EXAMPLE TRANSLATIONS

input Dushanba kuni Hindistonda kamida 34 kishi halok bo’lgani xabar qilindi .

reference At least 34 more deaths were reported Monday in India .

untied At least UNK people have died in India on Monday .

tied It was reported that at least 700 people died in Monday .

fixnorm At least 34 people died in India on Monday .

fixnorm+lex At least 34 people have died in India on Monday .

input Yarın Kenya’da bir yardım konferansı düzenlenecek .

reference Tomorrow a conference for aid will be conducted in Kenya .

untied Tomorrow there will be an Afghan relief conference .

tied Tomorrow there will be a relief conference in Myanmar .

fixnorm Tomorrow it will be a aid conference in Kenya .

fixnorm+lex Tomorrow there will be a relief conference in Kenya .

input Ammo muammolar hali ko’p , deydi amerikalik olim Entoni Fauchi .

reference But still there are many problems , says American scientist Anthony Fauci .

untied But there is still a lot of problems , says James Chan .

tied However , there is still a lot of problems , says American scientists .

fixnorm But there is still a lot of problems , says American scientist UNK UNK .

fixnorm+lex But there are still problems , says American scientist Anthony Fauci .

Example translations, in which untied and tied generate incorrect, but often semantically related, words,
but fixnorm and/or fixnorm+lex generate the correct ones.

45

(a) tied (b) fixnorm

(c) fixnorm+lex (d) Arthur et al. [4]

Figure 5.2. While the tied and fixnorm systems shift attention to the left one
word (on the source side), our fixnorm+lex model and that of Arthur et al. [4]

put it back to the correct position, improving unknown-word replacement for the
words Deutsche Telekom. Columns are source (English) words and rows are

target (Vietnamese) words. Bolded words are unknown.

46

TABLE 5.6

EXAMPLE DOT PRODUCT TERMS FROM FIXNORM+LEX

e cos θWe,h̃ cos θW l
e,hl

be + bl
e logit

Fauci 0.522 0.762 −8.71 7.0

UNK 0.566 −0.009 −1.25 5.6

Anthony 0.263 0.644 −8.70 2.4

Ahmedova 0.555 0.173 −8.66 0.3

Chan 0.546 0.150 −8.73 −0.2

TABLE 5.7

IMPACT OF R

system r train ppl dev BLEU

fixnorm

3 3.9 13.6

5 2.5 16.1

7 2.3 14.4

fixnorm+lex

2 4.2 12.3

3.5 2.0 17.5

5 1.4 16.0

When r is too small, high train perplexity and low dev BLEU indicate underfitting; when r is too large,
low train perplexity and low dev BLEU indicate overfitting.

47

TABLE 5.8

EXTRACTED LEXICON EXAMPLES

hu-en

244 244 (0.599) document (0.005) By (0.003)

befektetéseinek investments (0.151) investment (0.017) Investments (0.015)

kutatás-fejlesztésre research (0.227) Research (0.040) Development (0.014)

tu-en

ifade expression (0.109) expressed (0.061) express (0.056)

cumhurbaşkanı President (0.573) president (0.030) Republic (0.027)

Göstericiler protesters (0.115) demonstrators (0.050) Protesters (0.033)

ha-en

(0.469) cholera (0.003) EOS (0.001)

Wayoyin phones (0.414) wires (0.097) mobile (0.088)

manzonsa Prophet (0.080) His (0.041) Messenger (0.015)

Top five translations for some entries of the lexical tables extracted from fixnorm+lex. Probabilities are
shown in parentheses.

48

TABLE 5.9

TEST BLEU SCORES FOR BPE-BASED SYSTEMS

tied fixnorm fixnorm+lex

ta-en 13 15 (+2.0) 15.9 (+2.9)

ur-en 10.5 12.3 (+1.8) 13.7 (+3.2)

ha-en 18 21.7 (+3.7) 22.3 (+4.3)

tu-en 19.3 21 (+1.7) 22.2 (+2.9)

uz-en 18.9 19.8 (+0.9) 21 (+2.1)

hu-en 25.8 27.2 (+1.4) 27.9 (+2.1)

en-vi 26.3 27.3 (+1.0) 27.5 (+1.2)

en-de (newstest2014) 19.7 22.2 (+2.5) 20.4 (+0.7)

en-de (newstest2015) 22.5 25 (+2.5) 23.2 (+0.7)

Our models significantly improve over the baseline (p < 0.01) for both high and low resource when
using BPE.

49

CHAPTER 6

TRANSFORMERS WITHOUT TEARS: IMPROVING THE NORMALIZATION OF

SELF-ATTENTION

In the previous chapter, we have shown how to improve NMT performance via better

modeling and better normalization for RNN-based NMT. Recently, Transformer has re-

placed RNN to be the de facto model choice for many sequence-to-sequence problems.

Despite its impressive performance, Transformer is known to be unstable to train and other

works that use it often focus on high-resource settings only. In this chapter, we will show

how a simple rearrangement of Transformer components can improve its training (better

modeling). We also apply our normalization methods in chapter 5 and show how they

can enhance Transformer performance for low-resource languages (better normalization).

This chapter appeared as a publication at IWSLT 2019 [59].

Abstract We evaluate three simple, normalization-centric changes to improve Transformer

training. First, we show that pre-norm residual connections (PRENORM) and smaller ini-

tializations enable warmup-free, validation-based training with large learning rates. Sec-

ond, we propose `2 normalization with a single scale parameter (SCALENORM) for faster

training and better performance. Finally, we reaffirm the effectiveness of normalizing word

embeddings to a fixed length (FIXNORM). On five low-resource translation pairs from

TED Talks-based corpora, these changes always converge, giving an average +1.1 BLEU

over state-of-the-art bilingual baselines and a new 32.8 BLEU on IWSLT '15 English-

Vietnamese. We observe sharper performance curves, more consistent gradient norms,

and a linear relationship between activation scaling and decoder depth. Surprisingly, in

50

the high-resource setting (WMT '14 English-German), SCALENORM and FIXNORM re-

main competitive but PRENORM degrades performance.

6.1 Introduction

Transformer [87] has become the dominant architecture for neural machine transla-

tion (NMT) due to its train-time parallelism and strong downstream performance. Re-

lated work [22, 81] has investigated various modifications to improve the efficiency of its

multi-head attention and feedforward sublayers. Our work focuses on layer normalization

(LAYERNORM) [5], which we show has an outsized role in the convergence and perfor-

mance of the Transformer in two ways:

Placement of normalization. The original Transformer uses post-norm residual units

(POSTNORM), where layer normalization occurs after the sublayer and residual addition.

However, Chen et al. [10] found that pre-norm residual units (PRENORM), where layer

normalization occurs immediately before the sublayer, were instrumental to their model’s

performance. Wang et al. [91] compare the two, showing that PRENORM makes backprop-

agation more efficient over depth and training Transformers with deep, 30-layer encoders.

Our work demonstrates additional consequences in the base (≤6-layer encoder) Trans-

former regime. We show that PRENORM enables warmup-free, validation-based training

with large learning rates even for small batches, in contrast to past work on scaling NMT

[63]. We also partly reclaim POSTNORM’s stability via smaller initializations, although

PRENORM is less sensitive to this magnitude and can improve performance. However,

despite PRENORM’s recent adoption in many NMT frameworks, we find it degrades base

Transformer performance on WMT '14 English-German.

Choice of normalization. Santurkar et al. [74] show that batch normalization’s effective-

ness is not from reducing internal covariate shift, but from smoothing the loss landscape.

51

They achieve similar or better performance with non-variance-based normalizations in im-

age classification. Hence, we propose replacing LAYERNORM with the simpler scaled

`2 normalization (SCALENORM), which normalizes activation vectors to a single learned

length g. This is both inspired by and synergistic with jointly fixing the word embed-

ding lengths (FIXNORM) [57]. These changes improve the training speed and low-resource

performance of the Transformer without affecting high-resource performance.

On five low-resource pairs from the TED Talks [70] and IWSLT '15 [9] corpora, we first

train state-of-the-art Transformer models (+4.0 BLEU on average over the best published

NMT bitext-only numbers). We then apply PRENORM, FIXNORM, and SCALENORM for

an average total improvement of +1.1 BLEU, where each addition contributes at least +0.3

BLEU (Section 6.3), and attain a new 32.8 BLEU on IWSLT '15 English-Vietnamese. We

validate our intuitions in Section 6.4 by showing sharper performance curves (i.e., im-

provements occur at earlier epochs) and more consistent gradient norms. We also examine

the per-sublayer g’s learned by SCALENORM, which suggest future study1.

6.2 Background

6.2.1 Identity mappings for transformers

Residual connections [24] were first introduced to facilitate the training of deep convo-

lutional networks, where the output of the `-th layer F` is summed with its input:

x`+1 = x` + F`(x`). (6.1)

The identity term x` is crucial to greatly extending the depth of such networks [25]. If

one were to scale x` by a scalar λ`, then the contribution of x` to the final layer FL is

(
∏L−1

i=` λi)x`. For deep networks with dozens or even hundreds of layers L, the term
∏L−1

i=` λi

1Reimplementation available at https://github.com/tnq177/transformers_without_tears

52

https://github.com/tnq177/transformers_without_tears

becomes very large if λi > 1 or very small if λi < 1, for enough i. When backpropagating

from the last layer L back to `, these multiplicative terms can cause exploding or vanishing

gradients, respectively. Therefore they fix λi = 1, keeping the total residual path an identity

map.

The original Transformer applies LAYERNORM after the sublayer and residual addition

(POSTNORM):

x`+1 = LAYERNORM(x` + F`(x`)). (6.2)

We conjecture this has caused past convergence failures [68, 79], with LAYERNORMs in

the residual path acting similarly to λi , 1; furthermore, warmup was needed to let LAY-

ERNORM safely adjust scale during early parts of training. Inspired by He et al. [25], we

apply LAYERNORM immediately before each sublayer (PRENORM):

x`+1 = x` + F`(LAYERNORM(x`)). (6.3)

This is cited as a stabilizer for Transformer training [10, 91] and is already implemented

in popular toolkits [88, 64, 26], though not necessarily used by their default recipes. Wang

et al. [91] make a similar argument to motivate the success of PRENORM in training very

deep Transformers. Note that one must append an additional normalization after both

encoder and decoder so their outputs are appropriately scaled. We compare POSTNORM

and PRENORM throughout Section 6.3.

6.2.2 Weight initialization

Xavier normal initialization [18] initializes a layer’s weights W` ∈ R
d`+1×d` (d` is the

hidden dimension) with samples from a centered normal distribution with layer-dependent

variance:

(W`)i, j ∼ N

0, √ 2
d` + d`+1

 . (6.4)

53

Our experiments with this default initializer find that POSTNORM sometimes fails to con-

verge, especially in our low-resource setting, even with a large number of warmup steps.

One explanation is that Xavier normal yields initial weights that are too large. In im-

plementations of the Transformer, one scales the word embeddings by a large value (e.g.,
√

d ≈ 22.6 for d = 512), giving vectors with an expected square norm of d. LAYERNORM’s

unit scale at initialization preserves this same effect. Since feedforward layers already have

their weights initialized to a smaller standard deviation, i.e.,
√

2
d+4d , we choose to reduce

the attention layers’ initializations from
√

2
d+d to

√
2

d+4d as well (SMALLINIT), as a cor-

responding mitigation. We evaluate the effect of this on POSTNORM vs. PRENORM in

Section 6.3.2.

6.2.3 Scaled `2 normalization and FIXNORM

LAYERNORM is inspired by batch normalization [29], both of which aim to reduce

internal covariate shift by fixing the mean and variance of activation distributions. Both

have been applied to self-attention [87, 41]. However, Santurkar et al. [74] show that

batch normalization’s success has little to do with covariate shift, but comes instead from

smoothing the loss landscape. For example, they divide by the pre-centered `p norm instead

of the variance and achieve similar or better results in image classification.

Hence, we propose replacing LAYERNORM with scaled `2 normalization:

SCALENORM(x; g) = g
x
||x||

. (6.5)

This can be viewed as projecting d-dimensional vectors onto a (d − 1)-dimensional hy-

persphere with learned radius g. This expresses the inductive bias that each sublayer’s

activations has an ideal “global scale,” a notion we empirically validate in Section 6.4.2.

SCALENORM replaces the 2d scale and shift parameters of LAYERNORM with a single

learned scalar, improving computational and parameter efficiency while potentially regu-

54

TABLE 6.1

DATA AND MODEL PROPERTIES

egs. # src + tgt toks. # iters/epoch max epoch # enc/dec layers # heads/layer dropout # BPE

gl→en 10k 0.37M 100 1000 4 4 0.4 3k

sk→en 61k 2.32M 600 200 6 8 0.3 8k

en→vi 133k 5.99M 1500 200 6 8 0.3 8k

en→he 212k 7.88M 2000 200 6 8 0.3 8k

ar→en 214k 8.09M 2000 200 6 8 0.3 8k

larizing the loss landscape.

This bias has an explicit interpretation at the final layer: large inner products sharpen

the output distribution, causing frequent words to disproportionately dominate rare words.

This led Nguyen and Chiang [57] to introduce FIXNORM(w) = g w
||w|| with fixed g at the last

linear layer, to maximize the angular difference of output representations and aid rare word

translation. By making g learnable, we can apply SCALENORM and FIXNORM jointly,

which means applying the following at the final linear layer:

(SCALENORM+FIXNORM)(x,w; g)

= g
w · x
||w||||x||

.
(6.6)

Note that this combination at the last layer is equivalent to cosine normalization [46] with

a learned scale.

6.2.4 Learning rates

Despite using an adaptive optimizer, Adam [36], Transformer training uses a learning

rate (LR) schedule with a linear warmup and an inverse square root decay (INVSQRTDECAY):

55

LR(n) =
λ
√

d
min

(
1
√

n
,

n
n1.5

warmup

)
, (6.7)

where d is the hidden dimension of the self-attention layers, and λ, nwarmup are hyperpa-

rameters that determine the highest learning rate achieved and the number of steps to reach

it, respectively. These two hyperparameters have been the subject of much empirical study

[68, 63]. In light of our modifications however, we revisit various aspects of this schedule:

Warmup-free training. We conjectured that warmup is primarily needed when using

POSTNORM to gradually learn LAYERNORM parameters without gradient explosion/van-

ishing (Section 6.2.1). Hence, we evaluate both PRENORM and POSTNORM without warmup

in Section 6.3.4.

Large learning rates. To speed up training, one often explores using larger learning

rates. In the context of Transformer, Ott et al. [63] and Aharoni et al. [1] take λ ∈ {2, 3}

instead of the conventional λ = 1. Ott et al. [63] showed that one can scale up Adam’s

learning rate to 10−3 with an extremely large batch (400k tokens). However, the improved

convergence provided by our modifications could enable higher learning rates with much

small batch sizes (4k tokens), as examined in Section 6.3.4.

Validation-based decay. For similar reasons, one might wish to adopt a classic validation-

based decay, i.e., training at a high learning rate for as long as tenable, decaying rapidly

when development scores flatline. This has inspired usage of fixed decay schemes upon

convergence with INVSQRTDECAY [14, 72]. We revisit VALDECAY under our modifica-

tions, where we still perform a linear warmup but then multiply by a scale αdecay < 1 when

performance on a development set does not improve over patience evaluations.

56

6.3 Experiments and Results

We train Transformer models for a diverse set of five low-resource translation pairs

from the TED Talks [70] and the IWSLT '15 [9] corpora. Details are summarized in Ta-

ble 6.1.

6.3.1 Training details

Data and preprocessing. The pairs are English (en) to Hebrew (he), Vietnamese (vi),

and Galician (gl), Slovak (sk), Arabic (ar) to English (en). Because the data is already

preprocessed, we only apply BPE [78] with fastBPE2. Depending on the data size, we use

different numbers of BPE operations.

We wanted to compare with the latest low-resource works of [55, 1] on the TED Talks

corpus [70]. In particular, Aharoni et al. [1] identified 4 very low-resource pairs (<70k);

we took the two (gl→en, sk→en) that were not extremely low (≤6k). They then identified

4 low-resource pairs with 100k-300k examples; we took the top two (ar→en, en→he). To

introduce a second English-source pair and to showcase on a well-understood task, we used

the en→vi pair from IWSLT '15 with an in-between number of examples (133k). In this

way, we have examples of different resource levels, language families, writing directions,

and English-source versus -target.

Model configuration. We set the hidden dimension of the feedforward sublayer to 2048

and the rest to 512, matching Vaswani et al. [87]. We use the same dropout rate for output

of sublayers, ReLU, and attention weights. Additionally, we also do word dropout [77] with

probability 0.1. However, instead of zeroing the word embeddings, we randomly replace

tokens with UNK. For all experiments, we use label smoothing of 0.1 [84, 67]. The source

and target’s input and output embeddings are shared [69], but we mask out words that are

2https://github.com/glample/fastBPE

57

https://github.com/glample/fastBPE

not in the target’s vocabulary at the final output layer before softmax, by setting their logits

to −∞.

Training. We use a batch size of 4096 and optimize using Adam [36] with the default

parameters β1 = 0.9, β2 = 0.999, ε = 10−8. Gradients are clipped when global norm

exceeds 1.0 [66]. An epoch is a predefined number of iterations for each pair. We stop

training when a maximum number of epochs has been met or the learning rate becomes

too small (10−6). We also do early stopping when the development BLEU has not improved

for 20 evaluations. For gl→en, this number is 50. When doing validation-based decay, we

use αdecay = 0.8 and patience = 3. For complete data and model statistics, please refer to

Table 6.1. The best checkpoint is selected based on the development BLEU score during

training.

Evaluation. We report tokenized BLEU [65] with multi-bleu.perl to be comparable

with previous works. We also measure statistical significance using bootstrap resampling

[37]. For WMT '14 English-German, note that one needs to put compounds in ATAT for-

mat3 before calculating BLEU score to be comparable with previous works.

6.3.2 Large vs. small initialization

To see the impact of weight initialization, we run training on the en→vi dataset using

warmup steps of 4k, 8k, 16k (Table 6.2). With default initialization, POSTNORM fails to

converge on this dataset even with a long warmup of 16k steps, only reaching 5.76 BLEU.

The second row shows that taking a smaller standard deviation on the attention weights

(SMALLINIT) restores convergence to POSTNORM. Though the
√

2/5 ≈ 0.63 adjustment

3https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/
get_ende_bleu.sh

58

https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/get_ende_bleu.sh
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/get_ende_bleu.sh

TABLE 6.2

DEV BLEU SCORES ON EN→VI USING XAVIER NORMAL

INITIALIZATION

Xavier normal
warmup steps

4k 8k 16k

Baseline
POSTNORM fail fail 5.76

PRENORM 28.52 28.73 28.32

SMALLINIT
POSTNORM 28.17 28.20 28.62

PRENORM 28.26 28.44 28.33

used here seems marginal, operations like residual connections and the products between

queries and keys can compound differences in scale. Though both models now achieve

similar performance, we note that PRENORM works in all setups, suggesting greater sta-

bility during training. For all remaining experiments, we use POSTNORM and PRENORM

with SMALLINIT. We find this choice does not affect the performance of PRENORM.

6.3.3 Scaled `2 normalization and FIXNORM

To compare SCALENORM and LAYERNORM, we take 8k warmup steps for all further

experiments. Since we tie the target input word embedding and the last linear layer’s weight

(Section 6.3.1), FIXNORM is implemented by applying `2 normalization to the word em-

bedding, with each component initialized uniformly in [−0.01, 0.01]. For non-FIXNORM

models, word embeddings are initialized with mean 0 and standard deviation
√

1/d so they

sum to unit variance. All g’s in SCALENORM are initialized to
√

d.

Table 6.3 shows our results along with some published baselines. First, note that

our Transformer baselines with POSTNORM + LAYERNORM (1) are very strong non-

59

TABLE 6.3

TEST BLEU SCORES

gl→en sk→en en→vi en→he ar→en avg ∆

POSTNORM + LAYERNORM (published) 16.2 24.0 29.09 23.66 27.84 -4.05

POSTNORM + LAYERNORM (1) 18.47 29.37 31.94 27.85 33.39 +0.00

PRENORM + LAYERNORM (2) 19.09 29.45 31.92 28.13 33.79 +0.27

PRENORM + fixnorm + LAYERNORM (3) 19.38 29.50 32.45 28.39 34.35† +0.61

PRENORM + fixnorm + SCALENORM (4) 20.91‡∗ 30.25‡∗ 32.79∗ 28.44∗ 34.15∗ +1.10

Test BLEU using POSTNORM or PRENORM and different normalization techniques. Published values
are from Wang et al. [93], Neubig and Hu [55], Aharoni et al. [1]. †, ‡ and ∗ indicate significant improvement
of (3) over (2), (4) over (3), and (4) over (1), respectively; p < 0.01 via bootstrap resampling [37].

multilingual NMT models on these pairs. They outperform the best published numbers,

which are all Transformer models in the past year, by an average margin of +4.0 BLEU.

Then, we see that PRENORM (2) achieves comparable or slightly better results than POST-

NORM on all tasks. FIXNORM (3) gives an additional gain, especially on ar→en (p < 0.01).

Finally, we replace LAYERNORM with SCALENORM (4). SCALENORM significantly

improves on LAYERNORM for two very low-resource pairs, gl→en and sk→en. On the

other tasks, it performs comparably to LAYERNORM. Upon aggregating all changes, our fi-

nal model with SCALENORM and FIXNORM improves over our strong baseline with POST-

NORM on all tasks by an average of +1.1 BLEU (p < 0.01), with each change contributing

an average of at least +0.3 BLEU. In Section 6.4.2, we further examine where the perfor-

mance gains of SCALENORM come from.

Moreover, SCALENORM is also faster than LAYERNORM. Recall that for each vector

of size d, LAYERNORM needs to compute mean, standard deviation, scaling, and shift-

ing, which costs O(7d) operations. For SCALENORM, we only need O(3d) operations to

perform normalization and global scaling. This does not account for further gains due to

60

TABLE 6.4

DEV BLEU SCORES WITH DIFFERENT LEARNING RATE SCHEDULERS

gl→en sk→en en→vi en→he ar→en

NOWARMUP 18.00 28.92 28.91 30.33 35.40

INVSQRTDECAY 22.18 29.08 28.84 30.30 35.33

VALDECAY 21.45 29.46 28.67 30.69 35.46

INVSQRTDECAY + 2×LR 21.92 29.03 28.76 30.50 35.33

VALDECAY + 2×LR 21.63 29.49 28.46 30.13 34.95

reduction in parameters. In our implementation, training with SCALENORM is around 5%

faster than with LAYERNORM, similar to the speedups on NMT observed by Zhang and

Sennrich [97]’s RMSNORM (which can be viewed as SCALENORM with per-unit scales;

see Section 6.4.2).

6.3.4 Learning rates

We compare the original learning rate schedule in equation 6.7 (INVSQRTDECAY) with

validation-based decay (VALDECAY), possibly with no warmup (NOWARMUP). We use

λ = 1, nwarmup = 8k for INVSQRTDECAY and VALDECAY. For NOWARMUP, we instead

use a learning rate of 3 · 10−4 for all datasets. For both VALDECAY and NOWARMUP, we

take αdecay = 0.8 and patience = 3. For experiments with high learning rate, we use either

VALDECAY or INVSQRTDECAY with λ = 2 (giving a peak learning rate of ≈ 10−3). All

experiments use PRENORM + FIXNORM + SCALENORM.

In Table 6.4, we see that NOWARMUP performs comparably to INVSQRTDECAY and

VALDECAY except on gl→en. We believe that in general, one can do without warmup,

though it remains useful in the lowest resource settings. In our 2×LR experiments, we can

61

TABLE 6.5

DEV BLEU SCORES USING NOWARMUP

4 layers 5 layers 6 layers

POSTNORM 18.31 fails fails

PRENORM 28.33 28.13 28.32

Development BLEU on en→vi using NOWARMUP, as number of encoder/decoder layers increases.

still attain a maximum learning rate of 10−3 without disproportionately overfitting to small

datasets like gl→en.

One might hypothesize that VALDECAY converges more quickly to better minima than

INVSQRTDECAY by staying at high learning rates for longer. However, both schedulers

achieve similar results with or without doubling the learning rate. This may be due to the

tail-end behavior of VALDECAY methods, which can involve multiplicative decays in rapid

succession. Finally, our 2×LR experiments, while not yielding better performance, show

that PRENORM allows us to train the Transformer with a very high learning rate despite

small batches (4k tokens).

Since PRENORM can train without warmup, we wonder if POSTNORM can do the same.

We run experiments on en→vi with NOWARMUP, varying the number of encoder/decoder

layers. As seen in Table 6.5, POSTNORM often fails without warmup even with 5 or 6 lay-

ers. Even at 4 layers, one achieves a subpar result compared to PRENORM. This reaffirms

Section 6.3.2 in showing that PRENORM is more stable than POSTNORM under different

settings.

62

TABLE 6.6

WMT '14 ENGLISH-TO-GERMAN BLEU SCORES

newstest2014

POSTNORM + LAYERNORM (Vaswani et al. [87]) 27.3

PRENORM + LAYERNORM 26.83

PRENORM + fixnorm + SCALENORM 27.07

POSTNORM + LAYERNORM 27.58

POSTNORM + fixnorm + SCALENORM 27.57

6.3.5 High-resource setting

Since all preceding experiments were in low-resource settings, we examine if our claims

hold in a high-resource setting. We train the Transformer base model on WMT '14 English-

German using FAIRSEQ and report tokenized BLEU scores on newstest2014.

In Table 6.6, SCALENORM and FIXNORM achieve equal or better results than LAYER-

NORM. Since SCALENORM is also faster, we recommend using both as drop-in replace-

ments for LAYERNORM in all settings. Surprisingly, in this task POSTNORM works notably

better than PRENORM; one observes similar behavior in Wang et al. [91]. We speculate

this is related to identity residual networks acting like shallow ensembles [89] and thus

undermining the learning of the longest path; further study is required.

63

TABLE 6.7

TEST BLEU OF VARIOUS `2-BASED NORMALIZATION TECHNIQUES

gl→en sk→en en→vi en→he ar→en

RMSNORM + fixnorm 20.92 30.36 32.54 28.29 33.67

SCALENORM + fixnorm 20.91 30.25 32.79 28.44 34.15

SCALENORM (g=
√

d) + fixnorm (learned) 21.18 30.36 32.66 28.19 34.11

SCALENORM (g=
√

d) + fixnorm (learned) + VALDECAY 20.36 30.45 32.83 27.97 33.98

SCALENORM (g=
√

d) + fixnorm (learned) + VALDECAY + 2×LR 21.15 30.57 31.81 25.00 28.92

We tried various `2-based normalization techniques with different numbers of learned g: O(Ld) vs. O(L)
vs. O(1).

6.4 Analysis

6.4.1 Performance curves

Figure 6.1 shows that PRENORM not only learns faster than POSTNORM, but also out-

performs it throughout training. Adding FIXNORM also gives faster learning at first, but

only achieves close performance to that with PRENORM and no FIXNORM. However,

once paired with SCALENORM, we attain a better BLEU score at the end. Because of the

slow warmup period, SCALENORM with warmup learns slower than SCALENORM without

warmup initially; however, they all converge at about the same rate.

To visualize how PRENORM helps backpropagation, we plot the global gradient norms

from our runs in Figure 6.2. POSTNORM produces noisy gradients with many sharp spikes,

even towards the end of training. On the other hand, PRENORM has fewer noisy gradients

with smaller sizes, even without warmup. LAYERNORM has lower global norms than

SCALENORM + FIXNORM but it has more gradient components corresponding to normal-

ization.

64

20 40 60 80 100
epochs

18

20

22

24

26

28

30

D
ev

 B
LE

U

English-Vietnamese development BLEU

PreNorm+ScaleNorm+FixNorm+NoWarmup
PreNorm+ScaleNorm+FixNorm
PreNorm+LayerNorm+FixNorm
PreNorm+LayerNorm
PostNorm+LayerNorm

Figure 6.1. Development BLEU on en→vi with POSTNORM or PRENORM, and
with LAYERNORM or SCALENORM.

6.4.2 Activation scaling and the role of g

One motivation for SCALENORM was that it expressed a good inductive bias for the

global scaling of activations, independent of distributional stability (Section 6.2.3). In con-

trast, a contemporaneous work [97] studies root mean square layer normalization (RMSNORM),

which still follows layer normalization’s motivation but reduces overhead by forgoing addi-

tive adjustments, using only a scaling gi per activation ai. Despite their differing motives,

tying the gi of RMSNORM and dividing by
√

d retrieves SCALENORM.

Hence we can frame our comparisons in terms of number of learnable parameters. We

rerun our PRENORM experiments with RMSNORM. We also consider fixing g =
√

d for

65

0 200 400 600 800 1000 1200
iteration (x100)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

G
lo

ba
l n

or
m

 (l
og

 s
ca

le
)

Gradient global norm

PostNorm+LayerNorm
PreNorm+ScaleNorm+FixNorm+NoWarmup
PreNorm+ScaleNorm+FixNorm
PreNorm+LayerNorm

Figure 6.2. The global norm of gradients when using POSTNORM or PRENORM,
and with LAYERNORM, SCALENORM and FIXNORM. Best viewed in color.

11

12

13

14

15

16

17

18

g

encoder decoder decoder-encoder

Value of g for attention layers in encoder/decoder

ar en
en he
en vi

10

15

20

25

30

35

g

encoder decoder

Value of g for non-attention layers in encoder/decoder

ar en
en he
en vi

Figure 6.3: Learned g values for PRENORM + SCALENORM + FIXNORM models, versus
depth. Left: Attention sublayers (decoder-encoder denotes decoder sublayers attending on
the encoder). Right: Feedforward sublayers and the final linear layer.

66

13

14

15

16

17

18

g

encoder decoder decoder-encoder

Value of g for attention layers in encoder/decoder

Label smoothing
No label smoothing

15

20

25

30

35

40

g

encoder decoder

Value of g for non-attention layers in encoder/decoder

Label smoothing
No label smoothing

Figure 6.4: Learned g values for our PRENORM + SCALENORM + FIXNORM en→vi model
(with and without label smoothing), versus depth. Left and Right are the same as in
Figure 6.3.

SCALENORM, where only FIXNORM has learnable g. Table 6.7 shows that SCALENORM

always performs comparably or better than RMSNORM. Surprisingly, the fixed-g model

performs comparably to the one with learnable g. However, at higher learning rates, fixed-g

models perform much worse on ar→en, en→he and en→vi (VALDECAY with and without

2×LR). We conjecture that learning g is required to accommodate layer gradients.

In Figure 6.3, we plot the learned g values for pairs with 100k+ examples. For all

but the decoder-encoder sublayers, we observe a positive correlation between depth and g,

giving credence to SCALENORM’s inductive bias of global scaling. This trend is clearest

in the decoder, where g linearly scales up to the output layer, perhaps in tandem with the

discriminativeness of the hidden representations [43]. We also note a negative correlation

between the number of training examples and the magnitude of g for attention sublayers,

which may reflect overfitting.

Finally, to affirm our intuition for interpreting g, we plot g values with and without

label smoothing (Figure 6.4). We see a difference in later layers of the decoder; there,

removing label smoothing results in lower g values except at the output layer, where g

increases sharply. This corresponds to the known overconfidence of translation models’

logits, on which label smoothing has a downscaling effect [53].

67

CHAPTER 7

UNTIED POSITIONAL ATTENTION FOR NEURAL MACHINE TRANSLATION

In this chapter, we investigate the untied positional attention in Transformer. We will

show this simple architectural change can provide significant improvement for several low-

resource language pairs and better interpretations of how positions work in Transformer.

Unbeknownst to me, it had been investigated months earlier by Ke et al. [34]. The main

difference between theirs and mine is they applied it for language model pretraining and I

applied it for NMT. Needless to say, it is not novel nor publishable; however, I think it still

has merits for future NMT practitioners. For this reason, I decided to describe it here in

this short chapter.

7.1 Introduction

Because Transformer processes input in parallel, it does not have a notion of sequence.

To inform Transformer of a word’s position, Vaswani et al. [87] propose to enhance the

input with positional embedding. They experiment with both learned and sinusoidal em-

bedding and find both perform comparably, with the latter having the advantages of being

parameter-less and of the potential to generalize to longer sentences. In this section, we

will briefly describe the sinusoidal positional embedding and how it interacts with self-

attention, leading to our proposed untied positional attention. Interested readers could

refer to section 2.2 for more details of the Transformer model.

68

The sinusoidal positional embedding is defined as:

PE(pos,2i) = sin
(pos
100002i/d

)
(7.1)

PE(pos,2i+1) = cos
(pos
100002i/d

)
(7.2)

and is summed element-wise to each word embedding at the input as seen in Figure 2.2.

Let eq, pq ∈ R
d and ek, pk ∈ R

d be the word and positional embedding of a query and

a key respectively. In Transformer’s attention, we first apply a linear projection of queries

and keys before taking their dot product. Let Wq,Wk ∈ R
d×d be the weights of the linear

projections for queries and keys. Ignoring biases, the dot product is:

s = (eq + pq)Wq((ek + pk)Wk)T (7.3)

= (eq + pq)WqWT
k (eT

k + pT
k) (7.4)

= eqWqWT
k eT

k + pqWqWT
k pT

k + pqWqWT
k eT

k + eqWqWT
k pT

k (7.5)

In equation 7.5, the four terms measure the correlations between query and key, query’s

position and key’s position, query’s position and key, and query and key’s position respec-

tively. Our first observation is a word could appear anywhere in a sentence, therefore the

third and fourth terms could be potentially dropped. It makes sense to measure the correla-

tion between a query and a key, for example “New” often goes with “York”. The same goes

for positions, for example if we are using BPE then in self-attention, a query should look

for keys located close to it (subwords of the same word). However, because the first and

second terms model two entirely different things, using the same parameters Wq,Wk could

be a bottleneck. This is also our second observation which leads to a simple solution: drop

the last two terms and use different parameters for positions:

69

s = eqWqWT
k eT

k + pqW ′
qW ′T

k pT
k (7.6)

7.2 Experiments

Following chapter 4, we use Transformer and experiment on {Galician, Slovak} to

English and English to {Hebrew, Vietnamese}. We kindly refer readers to previous chapter

for data statistics and for the model configuration, training, and evaluation details.

Following equation 7.6, we use different parameters W ′
q,W

′
k for dot product between

query positions and key positions. Similar to Ke et al. [34], we only compute the second

term in 7.6 once and reuse it across layers to reduce computation. We call this model

untied-pos.

The goal of untied-pos is to learn the correlation scores between every pair of query

and key positions, i.e. to learn the value of some matrix M ∈ RLq×Lk with Lq, Lk be the

maximum lengths of query and key sentences. We can think of the term pqW ′
qW ′T

k pT
k as a

low-rank matrix factorization of M with W ′
qW ′

k be learnable parameters. This means the

role of pq, pk is not important as long as they are pair-wise independent enough. For this

reason, we also explore a variant of untied-pos in which pq, pk are randomly initialized

vectors instead of sinusoidal. We call this model random-untied-pos.

7.3 Results and Analysis

Tables 7.1 and 7.2 show the BLEU scores on development and test sets respectively

for all language pairs. We can see that untying positional attention from word attention

yield on average more than +1 BLEU score over the baseline. Moreover, randomly initial-

ized positional embedding perform comparably to its sinusoidal counterpart, significantly

improving over the baseline for all language pairs except en→vi.

70

TABLE 7.1

DEV BLEU SCORES FOR UNTIED POSITIONAL ATTENTION

Row gl→en sk→en en→vi en→he avg ∆

1 baseline 22.86 29.15 29.01 30.26 27.82 +0.0

2 untied-pos 26.33 30.14 28.79 30.79 29.01 +1.19

3 random-untied-pos 25.71 30.20 28.90 30.65 28.87 +1.05

To understand what patterns positional attention learns, we normalize then plot the val-

ues pqW ′
qW ′T

k pT
k for all position pairs i, j ∈ [0, 100]. We find in the case of self-attention,

some patterns are not easy to decipher but some clearly show the positional attention tends

to look in a close proximity for nearby subwords. An example is shown in Figure 7.1 for

decoder’s (top) and encoder’s (bottom) self-attentions. For cross-attention, every single

head has similar trend which follows along the diagonal as seen in Figure 7.2. We also

plot the target length versus source length as red dots in the same figure. We can see that

the positional attention follows the length plot closely which indicates that the positional

attention could be used to track the source sentence’s length. Finally, in both self- and

cross-attentions, we find both sinusoidal and randomly initialized positions tend to learn

similar patterns (left vs right in Figures 7.1 and 7.2). This, along with the similar perfor-

mance, indicates the type of positional encoding is probably not too important for untied

positional attention.

71

TABLE 7.2

TEST BLEU SCORES FOR UNTIED POSITIONAL ATTENTION

Row gl→en sk→en en→vi en→he avg ∆

1 baseline 20.73 30.32 32.72 28.06 27.96 +0.0

2 untied-pos 23.21† 31.13† 32.95 28.70† 29.00 +1.04

3 random-untied-pos 23.20† 31.35† 32.87 28.43† 28.97 +1.01

† = statistically significant improvement on the test set compared to baseline (p < 0.01).

7.4 Conclusion

In this chapter, we explore the untied positional attention in Transformer. Our exper-

iments demonstrate this simple change could significantly improve performance on low-

resource language pairs. Furthermore, untying positional attention from word attention

helps to reveal the patterns which the model learns from positions. This could potentially

help future study on model interpretability.

72

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899

99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899

99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899

99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899

99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Figure 7.1. Two learned patterns from self-attention in decoder (top) and encoder
(bottom) in untied-pos (left) and random-untied-pos (right).

73

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899

99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899

99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Figure 7.2. Positional attentions in untied-pos (left) and random-untied-pos
(right) seem to track source sentence lengths (red dots).

74

CHAPTER 8

CONCLUSION

In this dissertation, I have covered some background on Neural Machine Translation

with a particular focus on the low-resource domain. Through existing contributions and

related work, I have demonstrated the weakness of vanilla NMT systems when dealing

with limited data. To address this problem, I have proposed several methods under the

theme of better data exploitation, better normalization, and better modeling to allow

us to successfully train strong NMT models for low-resource languages.

More specifically, we have seen in chapter 3 how to make use of relationship between

languages at subword-level to improve transfer learning from one language pair to another.

On the same topic of better data exploitation, I also study a simple data augmentation

method via concatenation in chapter 4 and validate its effectiveness in low-resource sce-

narios. On better normalization, I propose a simple `2-based normalization technique

called fixnorm in chapter 5 to address the rare-word mistranslation problem. This tech-

nique, first studied in the context of RNN-based models, is further extended to Transformer

in chapter 6. This also results in a new layer normalization method called SCALENORM

which is simpler, faster, and requires less parameters than the traditional Layer Normaliza-

tion. Regarding better modeling, I propose three different changes to NMT models. In

chapter 5, I design a lexical model which can improve translation for rare words such as

name entities. In chapter 6, I study the Transformer model and make various adjustments

to improve its training stability. Finally, in chapter 7, I show how untying the positional at-

tention in Transformer can lead to improved performance for low-resource translation and

better model interpretability.

75

To close this work, I would like to briefly discuss two questions. First, with so many

techniques presented in this thesis, what is a recipe that I recommend for building a strong

NMT model for a low-resource language pair (LRP)? Second, what is the future of low-

resource NMT? To answer the first question, let us consider two scenarios: one in which

there exists a high-resource language pair (HRP) that is related to our LRP (e.g., Uzbek-

English as the HRP for Turkish-English), and one in which there is not such an HRP. In the

former case, the best practice I am aware of is transfer learning. As we have seen in chapter

3, we could build a NMT model for HRP then continue training on LRP. Furthermore,

related work on multilingual NMT [32, 23, 1, 55] has shown that we can simply train a

NMT system on the union of the LRP’s and the HRP’s data. However, if such an HRP

doesn’t exist, we have to rely on LRP. In this case, I would suggest building a Transformer

model as described in chapter 6 along with the data augmentation via concatenation as

studied in chapter 4.

To answer the second question, I think we need to consider two aspects of NMT: avail-

ability and usability. By availability, I mean that for any language pair, there should exist

a NMT model. At this level, the model might perform undesirably; it could potentially

translate only simple sentences. By usability, I mean the model must translate accurately

enough for casual communication. We need to get to availability first before considering

usability. I think the only way to reach availability for every low-resource language is via

unsupervised NMT [3], as this approach allows us to make use of monolingual data which

is often widely available or could be easily collected. To reach usability, however, I still

believe we must have a good amount of bitext data. Based on my experience, we should

aim for at least 100k but ideally 1M examples per language pair. Bitext mining approaches

[76] hopefully could help to lower the cost for data collecting. Nevertheless, we should

be careful of the quality of this kind of data, as it often contains either wrong translations

or harmful content [8]. Practically, we might have less data. In that case, we can always

improve the unsupervised NMT models using whatever bitext data that is available with

76

methods explored in this thesis or in other work.

Needless to say, there is more to do to improve NMT in general and low-resource ma-

chine translation in particular. All the techniques discussed here are a part of that effort

and hopefully they will shed some light onto previous and future research. For example, we

know that multilingual training can improve translation performance for low-resource lan-

guages. Our study on language relatedness and transfer learning in chapter 3 can partially

help to explain why this is the case. While all the normalization techniques in chapters 5

and 6 are invented to address the rare word mistranslation issue, they can also be consid-

ered as empirical evidence for how normalization can impact optimization as studied by

Santurkar et al. [74]. The data augmentation method in chapter 4 represents a case in which

an intuitive explanation might not be the reason behind some improvement and better ex-

planations should be carefully sought out. Finally, a growing body of work is focusing on

interpretability of Deep Learning models, and they might benefit from the study in chapter

7. Overall, I anticipate future work can benefit from these techniques to bring Machine

Translation to more languages of the world.

77

BIBLIOGRAPHY

1. R. Aharoni, M. Johnson, and O. Firat. Massively multilingual neural machine trans-
lation. In Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 3874–3884, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1388. URL
https://www.aclweb.org/anthology/N19-1388.

2. A. Anastasopoulos, A. Lui, T. Q. Nguyen, and D. Chiang. Neural machine transla-
tion of text from non-native speakers. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 3070–3080, Min-
neapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.
18653/v1/N19-1311. URL https://www.aclweb.org/anthology/N19-1311.

3. M. Artetxe, G. Labaka, E. Agirre, and K. Cho. Unsupervised neural machine
translation. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=Sy2ogebAW.

4. P. Arthur, G. Neubig, and S. Nakamura. Incorporating discrete translation lexicons
into neural machine translation. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 1557–1567, Austin, Texas, Nov.
2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1162. URL
https://www.aclweb.org/anthology/D16-1162.

5. J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization. CoRR, abs/1607.06450,
2015.

6. D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. In Proc. ICLR, 2015.

7. Y. Belinkov and Y. Bisk. Synthetic and natural noise both break neural machine
translation. In Proceedings of the Sixth International Conference on Learning Rep-
resentations, 2018. URL https://openreview.net/pdf?id=BJ8vJebC-.

8. I. Caswell, J. Kreutzer, L. Wang, A. Wahab, D. van Esch, N. Ulzii-Orshikh, A. Tapo,
N. Subramani, A. Sokolov, C. Sikasote, M. Setyawan, S. Sarin, S. Samb, B. Sagot,
C. Rivera, A. Rios, I. Papadimitriou, S. Osei, P. J. O. Suárez, I. Orife, K. Ogueji, R. A.
Niyongabo, T. Q. Nguyen, M. Müller, A. Müller, S. H. Muhammad, N. Muhammad,

78

https://www.aclweb.org/anthology/N19-1388
https://www.aclweb.org/anthology/N19-1311
https://openreview.net/forum?id=Sy2ogebAW
https://www.aclweb.org/anthology/D16-1162
https://openreview.net/pdf?id=BJ8vJebC-

A. Mnyakeni, J. Mirzakhalov, T. Matangira, C. Leong, N. Lawson, S. Kudugunta,
Y. Jernite, M. Jenny, O. Firat, B. F. P. Dossou, S. Dlamini, N. de Silva, S. Çabuk Ballı,
S. Biderman, A. Battisti, A. Baruwa, A. Bapna, P. Baljekar, I. A. Azime, A. Awokoya,
D. Ataman, O. Ahia, O. Ahia, S. Agrawal, and M. Adeyemi. Quality at a glance: An
audit of web-crawled multilingual datasets, 2021.

9. M. Cettolo, J. Niehues, L. Bentivogli, R. Cattoni, and M. Federico. The IWSLT 2015
Evaluation Campaign. In IWSLT, pages 3–4, 2015. URL http://workshop2015.
iwslt.org/downloads/IWSLT_2015_EP_0.pdf.

10. M. X. Chen, O. Firat, A. Bapna, M. Johnson, W. Macherey, G. Foster, L. Jones,
M. Schuster, N. Shazeer, N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, Z. Chen,
Y. Wu, and M. Hughes. The best of both worlds: Combining recent advances in
neural machine translation. In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pages 76–86,
Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-1008. URL https://www.aclweb.org/anthology/P18-1008.

11. K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of
neural machine translation: Encoder–decoder approaches. In Proc. Workshop on
Syntax, Semantics and Structure in Statistical Translation, 2014.

12. K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using RNN encoder–decoder for
statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar,
Oct. 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179.
URL https://www.aclweb.org/anthology/D14-1179.

13. J. Chung, K. Cho, and Y. Bengio. A character-level decoder without explicit segmen-
tation for neural machine translation. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 1693–
1703, Berlin, Germany, Aug. 2016. Association for Computational Linguistics. doi:
10.18653/v1/P16-1160. URL https://www.aclweb.org/anthology/P16-1160.

14. L. Dong, S. Xu, and B. Xu. Speech-transformer: A no-recurrence sequence-to-
sequence model for speech recognition. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5884–5888, 2018. doi:
10.1109/ICASSP.2018.8462506.

15. M. Fadaee, A. Bisazza, and C. Monz. Data augmentation for low-resource neu-
ral machine translation. In Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2: Short Papers), pages 567–573,
Vancouver, Canada, July 2017. Association for Computational Linguistics. URL
http://aclweb.org/anthology/P17-2090.

79

http://workshop2015.iwslt.org/downloads/IWSLT_2015_EP_0.pdf
http://workshop2015.iwslt.org/downloads/IWSLT_2015_EP_0.pdf
https://www.aclweb.org/anthology/P18-1008
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/P16-1160
http://aclweb.org/anthology/P17-2090

16. F. Gao, J. Zhu, L. Wu, Y. Xia, T. Qin, X. Cheng, W. Zhou, and T.-Y. Liu. Soft
contextual data augmentation for neural machine translation. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pages 5539–
5544, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1555. URL https://www.aclweb.org/anthology/P19-1555.

17. J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional
sequence to sequence learning. In D. Precup and Y. W. Teh, editors, Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 1243–1252. PMLR, 06–11 Aug 2017. URL
http://proceedings.mlr.press/v70/gehring17a.html.

18. X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Y. W. Teh and D. M. Titterington, editors, Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010, volume 9 of
JMLR Proceedings, pages 249–256. JMLR.org, 2010. URL http://proceedings.
mlr.press/v9/glorot10a.html.

19. X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and
statistics, pages 315–323, 2011.

20. J. Gu, Z. Lu, H. Li, and V. O. Li. Incorporating copying mechanism in sequence-
to-sequence learning. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1631–1640, Berlin,
Germany, Aug. 2016. Association for Computational Linguistics. doi: 10.18653/v1/
P16-1154. URL https://www.aclweb.org/anthology/P16-1154.

21. C. Gulcehre, S. Ahn, R. Nallapati, B. Zhou, and Y. Bengio. Pointing the unknown
words. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 140–149, Berlin, Germany, Aug.
2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1014. URL
https://www.aclweb.org/anthology/P16-1014.

22. Q. Guo, X. Qiu, P. Liu, Y. Shao, X. Xue, and Z. Zhang. Star-transformer. In
Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 1315–1325, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics. doi: 10.18653/v1/N19-1133. URL
https://www.aclweb.org/anthology/N19-1133.

23. T.-L. Ha, J. Niehues, and A. Waibel. Toward multilingual neural machine translation
with universal encoder and decoder. arXiv preprint arXiv:1611.04798, 2016.

24. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
CVPR, pages 770–778, 2016. ISBN 9781467388504. doi: 10.1109/CVPR.2016.90.

80

https://www.aclweb.org/anthology/P19-1555
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
https://www.aclweb.org/anthology/P16-1154
https://www.aclweb.org/anthology/P16-1014
https://www.aclweb.org/anthology/N19-1133

25. K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks.
In B. Leibe, J. Matas, N. Sebe, and M. Welling, editors, Computer Vision – ECCV
2016, pages 630–645, Cham, 2016. Springer International Publishing. ISBN 978-3-
319-46493-0.

26. F. Hieber, T. Domhan, M. Denkowski, D. Vilar, A. Sokolov, A. Clifton, and M. Post.
The Sockeye neural machine translation toolkit. In AMTA, pages 200–207, 2018.
URL https://www.aclweb.org/anthology/W18-1820/.

27. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9
(8), 1997.

28. H. Inan, K. Khosravi, and R. Socher. Tying word vectors and word classifiers: A
loss framework for language modeling. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?
id=r1aPbsFle.

29. S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. In ICML, pages 448–456, 2015. ISBN
9780874216561. doi: 10.1007/s13398-014-0173-7.2.

30. S. Jean, K. Cho, R. Memisevic, and Y. Bengio. On using very large target vocab-
ulary for neural machine translation. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages 1–
10, Beijing, China, July 2015. Association for Computational Linguistics. doi:
10.3115/v1/P15-1001. URL https://www.aclweb.org/anthology/P15-1001.

31. S. Jean, S. Lauly, O. Firat, and K. Cho. Does neural machine translation benefit from
larger context? arXiv preprint arXiv:1704.05135, 2017.

32. M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat, F. Viégas,
M. Wattenberg, G. Corrado, M. Hughes, and J. Dean. Google’s multilingual neural
machine translation system: Enabling zero-shot translation. Transactions of the Asso-
ciation for Computational Linguistics, 5:339–351, 2017. doi: 10.1162/tacl_a_00065.
URL https://www.aclweb.org/anthology/Q17-1024.

33. M. Junczys-Dowmunt. Microsoft translator at WMT 2019: Towards large-scale
document-level neural machine translation. In Proceedings of the Fourth Conference
on Machine Translation (Volume 2: Shared Task Papers, Day 1), pages 225–233, Flo-
rence, Italy, Aug. 2019. Association for Computational Linguistics. doi: 10.18653/
v1/W19-5321. URL https://www.aclweb.org/anthology/W19-5321.

34. G. Ke, D. He, and T.-Y. Liu. Rethinking positional encoding in language pre-training.
In International Conference on Learning Representations, 2021. URL https://
openreview.net/forum?id=09-528y2Fgf.

81

https://www.aclweb.org/anthology/W18-1820/
https://openreview.net/forum?id=r1aPbsFle
https://openreview.net/forum?id=r1aPbsFle
https://www.aclweb.org/anthology/P15-1001
https://www.aclweb.org/anthology/Q17-1024
https://www.aclweb.org/anthology/W19-5321
https://openreview.net/forum?id=09-528y2Fgf
https://openreview.net/forum?id=09-528y2Fgf

35. Y. Kim, D. T. Tran, and H. Ney. When and why is document-level context useful
in neural machine translation? In Proceedings of the Fourth Workshop on Dis-
course in Machine Translation (DiscoMT 2019), pages 24–34, Hong Kong, China,
Nov. 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-6503.
URL https://www.aclweb.org/anthology/D19-6503.

36. D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In ICLR,
2015.

37. P. Koehn. Statistical significance tests for machine translation evaluation. In Pro-
ceedings of the 2004 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 388–395, Barcelona, Spain, July 2004. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/W04-3250.

38. P. Koehn and R. Knowles. Six challenges for neural machine translation. In Proc.
First Workshop on Neural Machine Translation. Association for Computational Lin-
guistics, 2017.

39. P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi,
B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and
E. Herbst. Moses: Open source toolkit for statistical machine translation. In Pro-
ceedings of the 45th Annual Meeting of the Association for Computational Linguistics
Companion Volume Proceedings of the Demo and Poster Sessions, pages 177–180,
Prague, Czech Republic, June 2007. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/P07-2045.

40. S. Kondo, K. Hotate, M. Kaneko, and M. Komachi. Sentence concatenation ap-
proach to data augmentation for neural machine translation. In Proc. NAACL Student
Research Workshop, 2021. To appear.

41. W. Kool, H. van Hoof, and M. Welling. Attention, learn to solve routing problems!
In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=ByxBFsRqYm.

42. S. Läubli, R. Sennrich, and M. Volk. Has machine translation achieved human parity?
a case for document-level evaluation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 4791–4796, Brussels,
Belgium, Oct.-Nov. 2018. Association for Computational Linguistics. doi: 10.18653/
v1/D18-1512. URL https://www.aclweb.org/anthology/D18-1512.

43. D. Liang, Z. Huang, and Z. C. Lipton. Learning noise-invariant representations for
robust speech recognition. In SLT, pages 56–63, 2018. doi: 10.1109/SLT.2018.
8639575.

44. A. Liu and K. Kirchhoff. Context models for OOV word translation in low-resource
languages. In Proceedings of the 13th Conference of the Association for Machine
Translation in the Americas (Volume 1: Research Track), pages 54–67, Boston, MA,

82

https://www.aclweb.org/anthology/D19-6503
https://www.aclweb.org/anthology/W04-3250
https://www.aclweb.org/anthology/P07-2045
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://www.aclweb.org/anthology/D18-1512

Mar. 2018. Association for Machine Translation in the Americas. URL https://
www.aclweb.org/anthology/W18-1806.

45. W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-margin softmax loss for convolutional
neural networks. In Proceedings of The 33rd International Conference on Machine
Learning, pages 507–516, 2016.

46. C. Luo, J. Zhan, X. Xue, L. Wang, R. Ren, and Q. Yang. Cosine normalization:
Using cosine similarity instead of dot product in neural networks. In V. Kurková,
Y. Manolopoulos, B. Hammer, L. S. Iliadis, and I. Maglogiannis, editors, Artifi-
cial Neural Networks and Machine Learning - ICANN 2018 - 27th International
Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I, volume 11139 of Lecture Notes in Computer Science, pages
382–391. Springer, 2018. doi: 10.1007/978-3-030-01418-6_38. URL https:
//doi.org/10.1007/978-3-030-01418-6_38.

47. M.-T. Luong and C. D. Manning. Stanford neural machine translation systems for
spoken language domain. In Proc. IWSLT, 2015.

48. M.-T. Luong and C. D. Manning. Achieving open vocabulary neural machine transla-
tion with hybrid word-character models. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1054–1063, Berlin, Germany, Aug. 2016. Association for Computational Linguis-
tics. doi: 10.18653/v1/P16-1100. URL https://www.aclweb.org/anthology/
P16-1100.

49. T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1412–1421, Lisbon, Portugal, Sept.
2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1166. URL
https://www.aclweb.org/anthology/D15-1166.

50. T. Luong, I. Sutskever, Q. Le, O. Vinyals, and W. Zaremba. Addressing the rare
word problem in neural machine translation. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
11–19, Beijing, China, July 2015. Association for Computational Linguistics. doi:
10.3115/v1/P15-1002. URL https://www.aclweb.org/anthology/P15-1002.

51. H. Mi, Z. Wang, and A. Ittycheriah. Vocabulary manipulation for neural machine
translation. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), pages 124–129, Berlin, Germany,
Aug. 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-2021.
URL https://www.aclweb.org/anthology/P16-2021.

52. M. Morishita, Y. Oda, G. Neubig, K. Yoshino, K. Sudoh, and S. Nakamura. An
empirical study of mini-batch creation strategies for neural machine translation. In

83

https://www.aclweb.org/anthology/W18-1806
https://www.aclweb.org/anthology/W18-1806
https://doi.org/10.1007/978-3-030-01418-6_38
https://doi.org/10.1007/978-3-030-01418-6_38
https://www.aclweb.org/anthology/P16-1100
https://www.aclweb.org/anthology/P16-1100
https://www.aclweb.org/anthology/D15-1166
https://www.aclweb.org/anthology/P15-1002
https://www.aclweb.org/anthology/P16-2021

Proceedings of the First Workshop on Neural Machine Translation, pages 61–68,
Vancouver, Aug. 2017. Association for Computational Linguistics. doi: 10.18653/
v1/W17-3208. URL https://www.aclweb.org/anthology/W17-3208.

53. R. Müller, S. Kornblith, and G. E. Hinton. When does label smoothing help? In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf.

54. P. Nakov and H. T. Ng. Improved statistical machine translation for resource-poor
languages using related resource-rich languages. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language Processing, pages 1358–1367,
Singapore, Aug. 2009. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/D09-1141.

55. G. Neubig and J. Hu. Rapid adaptation of neural machine translation to new lan-
guages. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 875–880, Brussels, Belgium, Oct.-Nov. 2018. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/D18-1103. URL https:
//www.aclweb.org/anthology/D18-1103.

56. C. Ngo and T. H. Trinh. Better translation for Vietnamese. https://blog.vietai.
org/sat/, 2021. (Accessed on 04/27/2021).

57. T. Nguyen and D. Chiang. Improving Lexical Choice in Neural Machine Translation.
In NAACL-HLT, pages 334–343, 2018. doi: 10.18653/v1/n18-1031.

58. T. Q. Nguyen and D. Chiang. Transfer learning across low-resource, related lan-
guages for neural machine translation. In Proceedings of the Eighth International
Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages
296–301, Taipei, Taiwan, Nov. 2017. Asian Federation of Natural Language Process-
ing. URL https://www.aclweb.org/anthology/I17-2050.

59. T. Q. Nguyen and J. Salazar. Transformers without tears: Improving the normaliza-
tion of self-attention. In Proc. Workshop on Spoken Language Translation, 2019. doi:
10.5281/zenodo.3525484.

60. T. Q. Nguyen, K. Murray, and D. Chiang. Data augmentation by concatenation for
low-resource translation: A mystery and a solution. In The International Conference
on Spoken Language Translation, 2021.

61. F. J. Och and H. Ney. A systematic comparison of various statistical align-
ment models. Computational Linguistics, 29(1):19–51, 2003. doi: 10.1162/
089120103321337421. URL https://www.aclweb.org/anthology/J03-1002.

84

https://www.aclweb.org/anthology/W17-3208
https://proceedings.neurips.cc/paper/2019/file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf
https://www.aclweb.org/anthology/D09-1141
https://www.aclweb.org/anthology/D09-1141
https://www.aclweb.org/anthology/D18-1103
https://www.aclweb.org/anthology/D18-1103
https://blog.vietai.org/sat/
https://blog.vietai.org/sat/
https://www.aclweb.org/anthology/I17-2050
https://www.aclweb.org/anthology/J03-1002

62. F. J. Och and H. Ney. Discriminative training and maximum entropy models for
statistical machine translation. In Proceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics, pages 295–302, Philadelphia, Pennsylvania,
USA, July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.
1073133. URL https://www.aclweb.org/anthology/P02-1038.

63. M. Ott, S. Edunov, D. Grangier, and M. Auli. Scaling neural machine translation.
In Proceedings of the Third Conference on Machine Translation: Research Papers,
pages 1–9, Brussels, Belgium, Oct. 2018. Association for Computational Linguis-
tics. doi: 10.18653/v1/W18-6301. URL https://www.aclweb.org/anthology/
W18-6301.

64. M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and M. Auli.
fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics (Demonstrations), pages 48–53, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-4009. URL
https://www.aclweb.org/anthology/N19-4009.

65. K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsyl-
vania, USA, July 2002. Association for Computational Linguistics. doi: 10.3115/
1073083.1073135. URL https://www.aclweb.org/anthology/P02-1040.

66. R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neu-
ral networks. In Proceedings of the 30th International Conference on International
Conference on Machine Learning - Volume 28, ICML’13, page III–1310–III–1318.
JMLR.org, 2013.

67. G. Pereyra, G. Tucker, J. Chorowski, L. Kaiser, and G. E. Hinton. Regularizing
neural networks by penalizing confident output distributions. In ICLR (Workshop),
2017. URL https://openreview.net/forum?id=HyhbYrGYe.

68. M. Popel and O. Bojar. Training Tips for the Transformer Model. Prague Bull. Math.
Linguistics, 110(1):43–70, 2018. doi: 10.2478/pralin-2018-0002.

69. O. Press and L. Wolf. Using the output embedding to improve language models.
In Proceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Papers, pages 157–163, Valencia,
Spain, Apr. 2017. Association for Computational Linguistics. URL https://www.
aclweb.org/anthology/E17-2025.

70. Y. Qi, D. Sachan, M. Felix, S. Padmanabhan, and G. Neubig. When and Why Are
Pre-Trained Word Embeddings Useful for Neural Machine Translation? In NAACL-
HLT, pages 529–535, 2018. doi: 10.18653/v1/n18-2084.

85

https://www.aclweb.org/anthology/P02-1038
https://www.aclweb.org/anthology/W18-6301
https://www.aclweb.org/anthology/W18-6301
https://www.aclweb.org/anthology/N19-4009
https://www.aclweb.org/anthology/P02-1040
https://openreview.net/forum?id=HyhbYrGYe
https://www.aclweb.org/anthology/E17-2025
https://www.aclweb.org/anthology/E17-2025

71. A. Rush. The annotated transformer. In Proceedings of Workshop for NLP Open
Source Software (NLP-OSS), pages 52–60, Melbourne, Australia, July 2018. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/W18-2509. URL https:
//www.aclweb.org/anthology/W18-2509.

72. J. Salazar, K. Kirchhoff, and Z. Huang. Self-attention Networks for Connectionist
Temporal Classification in Speech Recognition. In ICASSP, pages 7115–7119, 2019.
ISBN 978-1-4799-8131-1. doi: 10.1109/ICASSP.2019.8682539.

73. T. Salimans and D. P. Kingma. Weight normalization: A simple repa-
rameterization to accelerate training of deep neural networks. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
ed265bc903a5a097f61d3ec064d96d2e-Paper.pdf.

74. S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How does batch normalization
help optimization? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.
cc/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf.

75. D. Saunders, F. Stahlberg, and B. Byrne. Using context in neural machine translation
training objectives. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7764–7770, Online, July 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.acl-main.693. URL https://
www.aclweb.org/anthology/2020.acl-main.693.

76. H. Schwenk, V. Chaudhary, S. Sun, H. Gong, and F. Guzmán. WikiMatrix: Mining
135M parallel sentences in 1620 language pairs from Wikipedia. In Proceedings of
the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, pages 1351–1361, Online, Apr. 2021. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/2021.
eacl-main.115.

77. R. Sennrich, B. Haddow, and A. Birch. Edinburgh neural machine translation sys-
tems for WMT 16. In Proceedings of the First Conference on Machine Transla-
tion: Volume 2, Shared Task Papers, pages 371–376, Berlin, Germany, Aug. 2016.
Association for Computational Linguistics. doi: 10.18653/v1/W16-2323. URL
https://www.aclweb.org/anthology/W16-2323.

78. R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin,
Germany, Aug. 2016. Association for Computational Linguistics. doi: 10.18653/v1/
P16-1162. URL https://www.aclweb.org/anthology/P16-1162.

86

https://www.aclweb.org/anthology/W18-2509
https://www.aclweb.org/anthology/W18-2509
https://proceedings.neurips.cc/paper/2016/file/ed265bc903a5a097f61d3ec064d96d2e-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/ed265bc903a5a097f61d3ec064d96d2e-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
https://www.aclweb.org/anthology/2020.acl-main.693
https://www.aclweb.org/anthology/2020.acl-main.693
https://www.aclweb.org/anthology/2021.eacl-main.115
https://www.aclweb.org/anthology/2021.eacl-main.115
https://www.aclweb.org/anthology/W16-2323
https://www.aclweb.org/anthology/P16-1162

79. N. Shazeer and M. Stern. Adafactor: Adaptive Learning Rates with Sublinear Mem-
ory Cost. In ICML, pages 4603–4611, 2018.

80. D. Stojanovski and A. Fraser. Combining local and document-level context: The
LMU Munich neural machine translation system at WMT19. In Proceedings of the
Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1),
pages 400–406, Florence, Italy, Aug. 2019. Association for Computational Linguis-
tics. doi: 10.18653/v1/W19-5345. URL https://www.aclweb.org/anthology/
W19-5345.

81. S. Sukhbaatar, E. Grave, G. Lample, H. Jegou, and A. Joulin. Augmenting Self-
attention with Persistent Memory. CoRR, abs/1907.01470, 2019.

82. Z. Sun, M. Wang, H. Zhou, C. Zhao, S. Huang, J. Chen, and L. Li. Capturing
longer context for document-level neural machine translation: A multi-resolutional
approach. arXiv preprint arXiv:2010.08961, 2020.

83. I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing Systems, volume 27. Cur-
ran Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper/
2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf.

84. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception
architecture for computer vision. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages
2818–2826. IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.308. URL
https://doi.org/10.1109/CVPR.2016.308.

85. X. Tan, L. Zhang, D. Xiong, and G. Zhou. Hierarchical modeling of global context
for document-level neural machine translation. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
1576–1585, Hong Kong, China, Nov. 2019. Association for Computational Linguis-
tics. doi: 10.18653/v1/D19-1168. URL https://www.aclweb.org/anthology/
D19-1168.

86. J. Tiedemann and Y. Scherrer. Neural machine translation with extended context.
In Proceedings of the Third Workshop on Discourse in Machine Translation, pages
82–92, Copenhagen, Denmark, Sept. 2017. Association for Computational Linguis-
tics. doi: 10.18653/v1/W17-4811. URL https://www.aclweb.org/anthology/
W17-4811.

87. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,

87

https://www.aclweb.org/anthology/W19-5345
https://www.aclweb.org/anthology/W19-5345
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://doi.org/10.1109/CVPR.2016.308
https://www.aclweb.org/anthology/D19-1168
https://www.aclweb.org/anthology/D19-1168
https://www.aclweb.org/anthology/W17-4811
https://www.aclweb.org/anthology/W17-4811

Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

88. A. Vaswani, S. Bengio, E. Brevdo, F. Chollet, A. N. Gomez, S. Gouws, L. Jones,
L. Kaiser, N. Kalchbrenner, N. Parmar, R. Sepassi, N. Shazeer, and J. Uszkoreit.
Tensor2tensor for neural machine translation. CoRR, abs/1803.07416, 2018. URL
http://arxiv.org/abs/1803.07416.

89. A. Veit, M. J. Wilber, and S. Belongie. Residual networks behave like ensembles
of relatively shallow networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.
cc/paper/2016/file/37bc2f75bf1bcfe8450a1a41c200364c-Paper.pdf.

90. F. Wang, X. Xiang, J. Cheng, and A. L. Yuille. Normface: L₂ hyper-
sphere embedding for face verification. In Proceedings of the 25th ACM Interna-
tional Conference on Multimedia, MM ’17, page 1041–1049, New York, NY, USA,
2017. Association for Computing Machinery. ISBN 9781450349062. doi: 10.1145/
3123266.3123359. URL https://doi.org/10.1145/3123266.3123359.

91. Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. F. Wong, and L. S. Chao. Learn-
ing deep transformer models for machine translation. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 1810–
1822, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1176. URL https://www.aclweb.org/anthology/P19-1176.

92. X. Wang, Z. Lu, Z. Tu, H. Li, D. Xiong, and M. Zhang. Neural machine translation
advised by statistical machine translation. In Proc. AAAI, 2017.

93. X. Wang, H. Pham, Z. Dai, and G. Neubig. SwitchOut: an efficient data augmentation
algorithm for neural machine translation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 856–861, Brussels,
Belgium, Oct.-Nov. 2018. Association for Computational Linguistics. doi: 10.18653/
v1/D18-1100. URL https://www.aclweb.org/anthology/D18-1100.

94. Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, et al. Google’s neural machine translation system: Bridging
the gap between human and machine translation, 2016. arXiv:1609.08144.

95. W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regularization,
2014. arXiv:1409.2329.

96. M. D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701,
2012. URL http://arxiv.org/abs/1212.5701.

88

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1803.07416
https://proceedings.neurips.cc/paper/2016/file/37bc2f75bf1bcfe8450a1a41c200364c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/37bc2f75bf1bcfe8450a1a41c200364c-Paper.pdf
https://doi.org/10.1145/3123266.3123359
https://www.aclweb.org/anthology/P19-1176
https://www.aclweb.org/anthology/D18-1100
http://arxiv.org/abs/1212.5701

97. B. Zhang and R. Sennrich. Root mean square layer normalization. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf.

98. J. Zhang, H. Luan, M. Sun, F. Zhai, J. Xu, M. Zhang, and Y. Liu. Improving the
transformer translation model with document-level context. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, pages 533–
542, Brussels, Belgium, Oct.-Nov. 2018. Association for Computational Linguis-
tics. doi: 10.18653/v1/D18-1049. URL https://www.aclweb.org/anthology/
D18-1049.

99. Z. Zheng, X. Yue, S. Huang, J. Chen, and A. Birch. Towards making the most of
context in neural machine translation. In Proceedings of IJCAI-PRICAI, 2020.

100. B. Zoph, D. Yuret, J. May, and K. Knight. Transfer learning for low-resource neural
machine translation. In Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1568–1575, Austin, Texas, Nov. 2016.
Association for Computational Linguistics. doi: 10.18653/v1/D16-1163. URL
https://www.aclweb.org/anthology/D16-1163.

This document was prepared & typeset with pdfLATEX, and formatted with nddiss2ε
classfile (v3.2017.2[2017/05/09])

89

https://proceedings.neurips.cc/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://www.aclweb.org/anthology/D18-1049
https://www.aclweb.org/anthology/D18-1049
https://www.aclweb.org/anthology/D16-1163

	Abstract
	Contents
	Figures
	Tables
	Acknowledgments
	Chapter 1: Introduction
	Chapter 2: Background
	2.1 RNN-based NMT
	2.2 Transformer

	Chapter 3: Transfer Learning across Low-Resource, Related Languages for Neural Machine Translation
	3.1 Introduction
	3.2 Method
	3.2.1 Transliteration
	3.2.2 Segmentation

	3.3 Experiments
	3.4 Results and Analysis

	Chapter 4: Data Augmentation by Concatenation for Low-Resource Translation: A Mystery and a Solution
	4.1 Introduction
	4.2 Concatenation
	4.2.1 Methods
	4.2.2 Initial experiments

	4.3 Analysis
	4.3.1 Discourse context
	4.3.2 Position shifting
	4.3.3 Context diversity
	4.3.4 Length diversity
	4.3.5 Feature ablation

	4.4 Conclusion

	Chapter 5: Improving Lexical Choice in Neural Machine Translation
	5.1 Introduction
	5.2 Neural Machine Translation
	5.3 Normalization
	5.4 Lexical Translation
	5.5 Experiments
	5.5.1 Data
	5.5.2 Systems
	5.5.3 Details

	5.6 Results and Analysis
	5.6.1 Overall
	5.6.2 Impact on translation
	5.6.3 Alignment and unknown words
	5.6.4 Impact of r
	5.6.5 Lexicon
	5.6.6 Byte Pair Encoding

	5.7 Related Work
	5.8 Conclusion

	Chapter 6: Transformers without Tears: Improving the Normalization of Self-Attention
	6.1 Introduction
	6.2 Background
	6.2.1 Identity mappings for transformers
	6.2.2 Weight initialization
	6.2.3 Scaled 2 normalization and FixNorm
	6.2.4 Learning rates

	6.3 Experiments and Results
	6.3.1 Training details
	6.3.2 Large vs. small initialization
	6.3.3 Scaled 2 normalization and FixNorm
	6.3.4 Learning rates
	6.3.5 High-resource setting

	6.4 Analysis
	6.4.1 Performance curves
	6.4.2 Activation scaling and the role of g

	Chapter 7: Untied Positional Attention For Neural Machine Translation
	7.1 Introduction
	7.2 Experiments
	7.3 Results and Analysis
	7.4 Conclusion

	Chapter 8: Conclusion
	Bibliography

